

INDUSTRIES, LLC

HAS-799-03.90/04.52: ODOT'S 1ST PROJECT WITH CARBON FIBER PRESTRESSING STRANDS

Ohio Transportation Engineering Conference (OTEC)

ANGELA TREMBLAY, P.E. - LJB INC.

DAN RENAUD - PRESTRESS SERVICES INDUSTRIES, LLC.

OCTOBER 11, 2017

BOTTOM LINE

Box beam bridges deteriorate and are being replaced
 30-40 years after construction

BOTTOM LINE

 ODOT's goal is to utilize non-conventional materials to increase the useful life of these bridges to 100 years

Carbon Fiber Composite Cable (CFCC)

Stainless Steel

PRESENTATION OVERVIEW

- Common problems and solutions
- Project goals
- Carbon Fiber Composite Cable (CFCC) box beam and transverse post-tensioning design
- Fabrication
- Cost comparisons and summary

COMMON BEAM DETERIORATION

POSSIBLE BOX BEAM BRIDGE SOLUTIONS

- Conventional solutions to increasing the life of box beam bridges
 - Using a composite concrete deck instead of applying asphalt wearing surface to tops of beams

POSSIBLE BOX BEAM BRIDGE SOLUTIONS

- Non-conventional solutions to increasing the life of box beam bridges
 - Transversely post-tensioning the box beams
 - > Carbon fiber prestressing strands instead of the steel strands
 - Stainless steel reinforcing instead of typical epoxy-coated rebar
 - > High performance grout or UHPC for shear keys between beams

- > Resource International Inc.
- Dr. Nabil Grace -Lawrence Tech University
- Roy Eriksson ErikssonTechnologies, Inc.
- > Tokyo Rope (CFCC provider)

TOKYO ROPE MFG. CO., LTD.

ODOT

- Office of StructuralEngineering
- > District 11
- Prestress ServicesIndustries, LLC

- Project scope
 - Replace two existing box beam bridges over Clendening Lake

Project scope

One bridge scoped to be conventional materials while the other bridge scoped to be non-conventional materials

Perform research into
 non-conventional methods
 and materials

- Non-Conventional Bridge is Unique and Innovative
 - First bridge in Ohio to use
 Carbon Fiber Composite Cable
 (CFCC) prestressing strands
 (Tokyo Rope)

- > Stainless steel reinforcing bars in the box beams, composite concrete deck slab and approach slabs
- Transversely post-tensioned (both bridges)

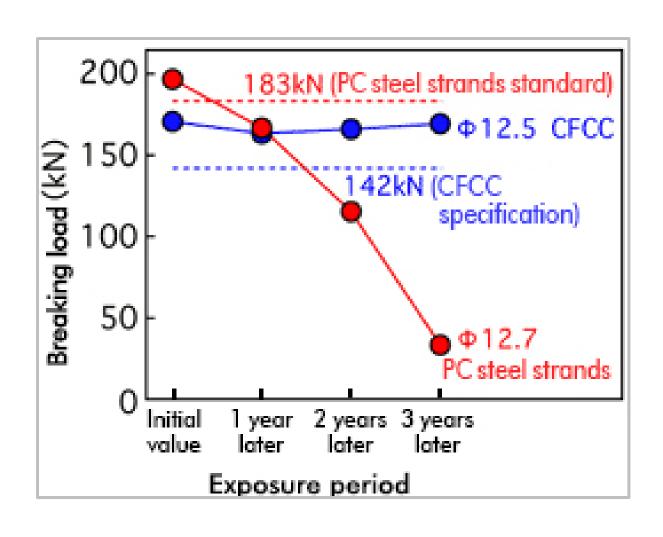
- Developed by Tokyo Rope Mfg. Co., Ltd.
- Patented in 10 countries
- CFCC® is a registered trade mark of Tokyo Rope
- Fiber-reinforced polymer (FRP)

- Composite reinforcing cable utilizing carbon fibers and resins formed into a standard cable shape
- Twisted 7 micrometer diameter carbon fibers with an epoxy resin
- 7 strands braided into 1 cable

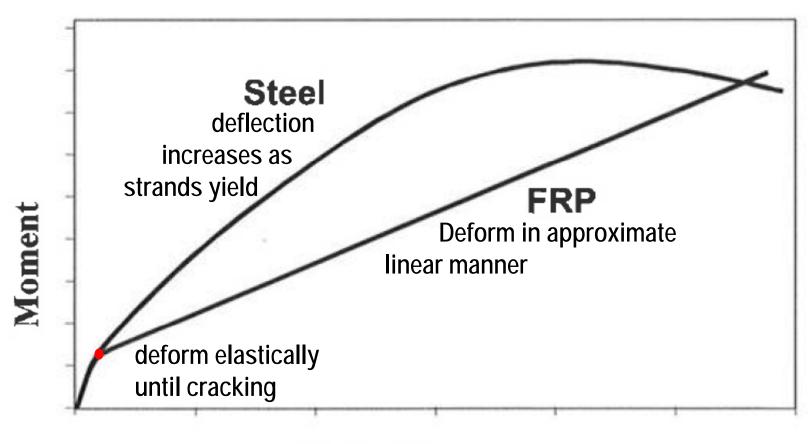
Advantages:

- Light weight and flexible
 - 15 lbs per 100 feet of CFCC
 - 52 lbs per 100 feet of steel strands
- > High tensile strength
- > High corrosion resistance

- High corrosion resistance
 - > Superior resistance to acid and alkali
 - Oceans
 - Areas using salt for de-icing of roads


Condition of CFCC after exposure

Condition of low relaxation strands after exposure


CFCC - HIGH CORROSION RESISTANCE

DESIGN CHALLENGES WITH CFCC

- Designed using ACI-440.4R-04 (Prestressing Concrete Structures with FRP Tendons)
- Tensile stress allowed at service limit state
 - > Zero for CFCC design
 - > 0.0948√f'c = 250 psi for a severe corrosive environment
 (AASHTO Table 5.9.4.2.2-1)
 - Resulted in more strands to limit concrete tensile stress

DEFORMATION CHARACTERISTICS

Deflection

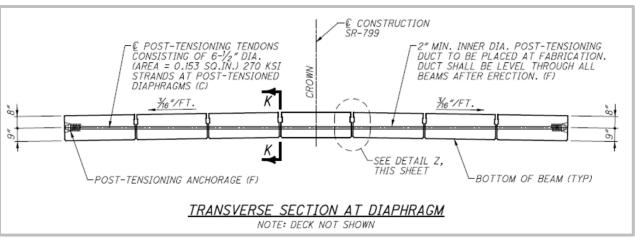
CFCC VS STEEL PRESTRESSING

	CFCC	Low Relaxation
Diameter	0.6 inch	0.5 inch
Area	0.179 sq in	0.167 sq in
Ultimate Tensile Stress	305 ksi	270 ksi
Initial Swess	1 <mark>83 ks</mark> (60%)	202.5 ksi (75%)
Stress after All Losses	144.6 Ks/ (21%)	171.3 ksi (15%)

STAINLESS STEEL SUPERSTRUCTURE

- Stainless steel using in 6" concrete deck and stirrups
- ODOT didn't want a corrosive steel material in the box beams with the CFCC strands

STAINLESS STEEL REINFORCING BARS


- Corrosion resistant
- US conventional bar sizes
- Standard bend shapes
- Grade 60 and Grade 75
- Care is required during shipping,
 handling, fabrication and placement

TRANSVERSE POST-TENSION

- Replace traditional tie rods with post-tension
 - > Help prevent leakage between the box beam joints
- Post tensioning at quarter points (both bridges)
 - > Six 0.5" diameter low relaxation strands

CFCC VS TRADITIONAL BRIDGE

7 CB17-48 box beams; 55'-0" span

	HAS-799-0390 CFCC & Stainless	HAS-799-0452 Traditional
Strand	0.6 inch diameter 0.179 sq in	0.5 inch diameter 0.167 sq in
Number of Strands	36 CFCC	28 Low Relax
Release Concrete	6.5 ksi	5.5 ksi
Final Concrete	7 ksi	7 ksi

CFCC VS TRADITIONAL BRIDGE

	HAS-799-0390 CFCC & Stainless	HAS-799-0452 Traditional
Life Span	100+ years	40 - 50 years
Cost 2016	\$39,400 per beam	\$8,800 per beam
Beam Replacement 2066	5½" * \$ HOLE (TYP ACH END OF BEAM)	\$10,000 per beam
Construction 2066	N/A	\$25,000 per beam
Life Cycle Costs 2116	\$39,400 per beam	\$43,800 per beam
6 SPA. @ 2" = 1'-0" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4" 4"	STRANDS 4" 2"- 5 SFR ANDS 5 SFR ANDS	4" 4" 4" 5TRANDS A. @ 2" = 10"
CB17-48 CFCC PATTERN	<u> </u>	B17-48 STRAND PATTERN

HAS-799-03.90, PID NO. 91603

PSI Presentation Overview

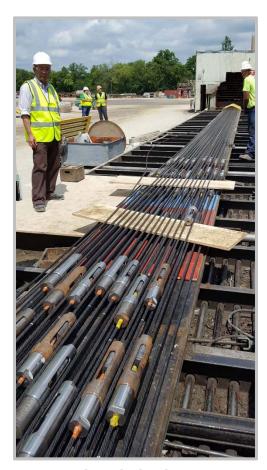
- 1. Past projects and experience with CFCC strand
- 2. Preplanning for Carbon Fiber Composite Strand
- 3. Specific Safety Requirements and Material Handling

PAST PROJECTS AND EXPERIENCE

PSI's First CFCC Project in Taylor County, KY in 2014.

(29) CFCC Strands

Stainless Steel Rebar



HN4054 x 74' Long

PAST PROJECTS AND EXPERIENCE

PSI's Second CFCC Project in St. Joseph, MI in 2016.

(59) CFCC Strands

Epoxy Coated Rebar

HN4249 x 107' Long

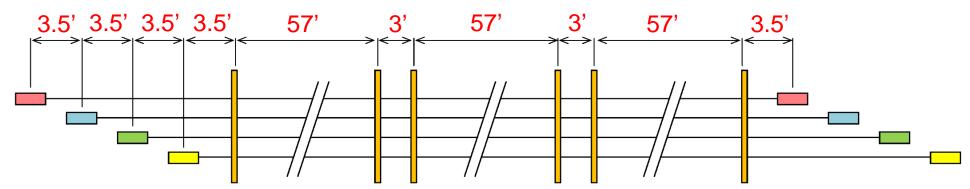
PREPLANNING FOR CFCC

- 1. Bed selection and number of beams per cast.
- 2. Coupler staggering layout and stressing sequence.

1. Bed Criteria

Based on stressing capacity and making full use of the casting bed length

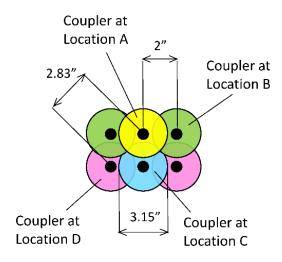
- Harrison County, OH CFCC beams consists of (7) beams 17" x 48" x 57' long.
- The beams have (36) .6" dia. strands pulled to approximately 33,500 lbs.
- Number of coupler locations were (4) spaces at approximately 4'-0"


2. Sequencing Criteria

Based mainly on the size of the coupler.

PREPLANNING FOR CFCC

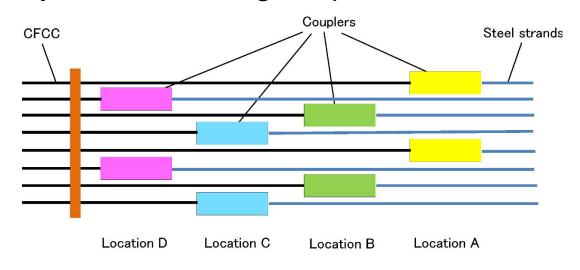
210' Casting Bed with a 'Chuck to Chuck' of 225' selected.

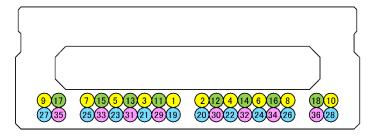


Bed Allowances

- \checkmark (3) Beams per cast = 57' x 3 = 171'-0"
- √ (2) Gaps between beams = 3' x 2 = 6'-0"
- √ (4) Locations @ 3'-6" x 2 ends = 28'-0"
- > Total Above = 207' Use 210' Casting Bed

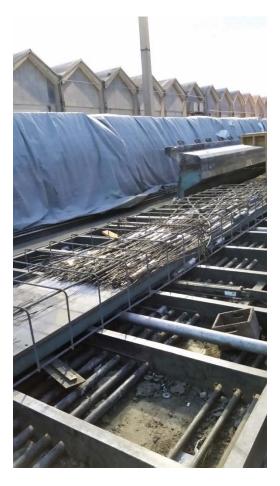
Strand Length based on 'Chuck to Chuck of 225'


- ightharpoonup CFCC = (3.5' x 5) + (57' x 3) + (3 x 2) = 194.5'
- ➤ Steel = 225' Chuck to Chuck 194.5 CFCC = 30.5'

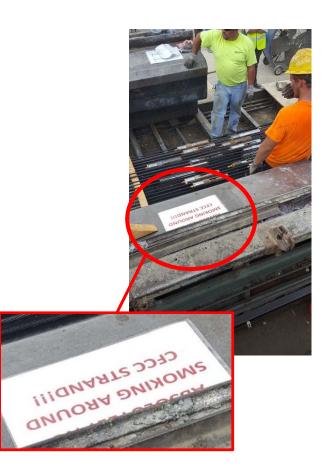


PREPLANNING FOR CFCC

Coupler Layout & Stressing Sequence


Elongation is a critical component of the coupler layout and sequencing preplanning

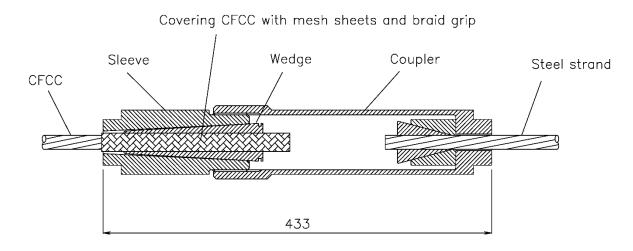
SAFETY AND CFCC STRAND



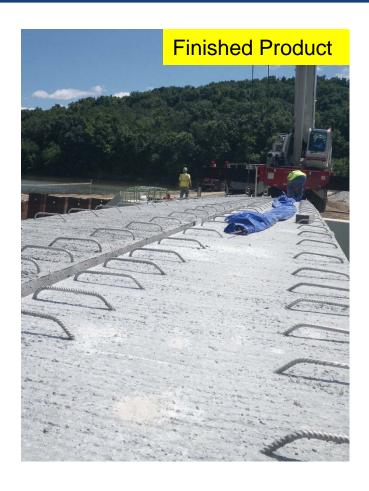
SAFETY AND CFCC STRAND

HANDLING CFCC

Pushing Machine


THE COUPLER

HAS-799-03.90, PID NO. 91603



HAS-799-03.90, PID NO. 91603

THANK YOU & FOR MORE INFORMATION

- Daniel Springer, P.E., PMP

 Angela Tremblay, P.E.

 - > <u>DSpringer@LJBinc.com</u>

> <u>ATremblay@LJBinc.com</u>

> (937) 259-5192

> (937) 259-5798

- Dan Renaud
 - > drenaud@prestressservices.com
 - > (859) 361-5217

