Introduction of 3D Technology & Machine Control Systems

Bret Alsobrooks

Introduction

- De-mystify 3D Machine Control
- Highlight areas where 3D Machine Control is used and how these projects benefited
- How to analyze which tool will help you meet or exceed project specifications
- A look at some new, high tech grade control tools that are changing the way grading is being done.

Jones Bros., Inc. GPS Project List

PROJECT	<u>D.O.T.</u>	<u>COUNTY</u>	<u>CITY</u>
INTERSTATE 840 7 mile 4-lane rock subgrade / I-65 Interchange	Tennessee	Williamson	Franklin
HIGHWAY 452 6 mile subgrade / I-840 Interchange	Tennessee	Wilson	Lebanon
HIGHWAY 153 A. 4-Lane, 5 mile 1. Lack of radio signal 2. Poor plans elevation 3. Poor JBI training	Tennessee	Hamilton	Chattanooga
JOE B. JACKSON PARKWAY 4 mile subgrade / I-24 Interchange	Tennessee	Rutherford	Murfreesboro
EASTGATE BLVD. Access road for industrial park	Tennessee	Wilson	Lebanon
PRIMARY 29 A. 14 miles 1. Soil cement subgrade 2. Base cement in rock cuts	Virginia	Amherst	Amherst
FM 1187 4-lane, 7 mile subgrade; lime treated subgrade	Texas		Fort Worth
US 71 / 59 INTERCHANGE 6 mile subgrade, select fills	Texas		Texarkana
INTERSTATE 4 / MEMORIAL BLVD.	Florida		Lakeland
CORRIDOR H (Two Projects) 10 mile; 200 ft cuts and fills; boxed cuts; select fills	West Virginia	Hardy	

Introduction

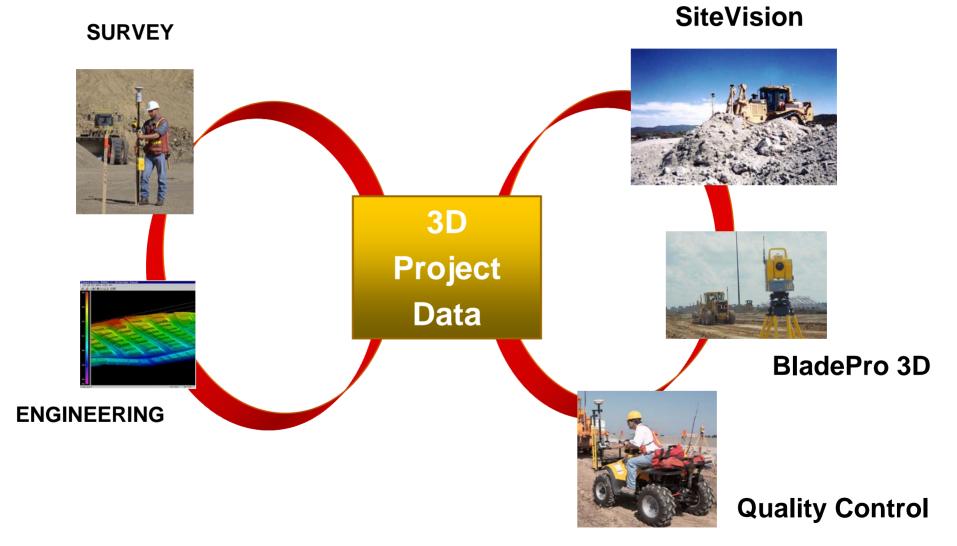
- 3D Systems require a set "Process" to be followed
- 3D Machine Control Systems are not "Plug and Play" products
 - Key Points for successful 3D operations
 - Trouble shooting techniques that apply to all 3D systems

"Stakeless" Grade Control

SiteVision GPS

BladePro 3D-ATS

What is "Stakeless" Grade Control ? How does the 'process' work?



3D Begins Data Flow Process

START — → FINISH

TOTAL SOLUTION

Data Preparation

What is required for the field?

- Finish grade or sub-grade?
 - Site finish grade
 - Road finish grade, top of rock, dirt
- Pre-calculated points for field layout
 - Structures
 - Drainage structures
 - Edge of pavement, edge of shoulder
- Road data with special coding, toe of slopes, ROW, or template breaks

To create a Digital Terrain Mode

Applications of 3D Machine Control and GPS Survey Systems

BladePro 3D (BP3D)- Total Station Based

- Finishing Subgrade
- Knockdown and placing of materials in various zones
- III. Finish Grading
- N. Phased Construction
- v. Erosion Control
- vi. Bridge Structures
- vii. Drainage
- VIII. Signs, Guardrail

- A Fine Grading tool operating on a Motor Grader.
- BP3D uses a Geodimeter Automatic
 Tracking System (ATS) measuring to a sensor mounted on the Motor Grader blade.
- One ATS Base runs one Motor Grader.
 Multiple Motor Graders cannot share one ATS.
- Accuracy +-.02 foot

Applications of 3D Machine Control Systems

Blade-Pro 3D (BP3D) – Motorgrader

The Components

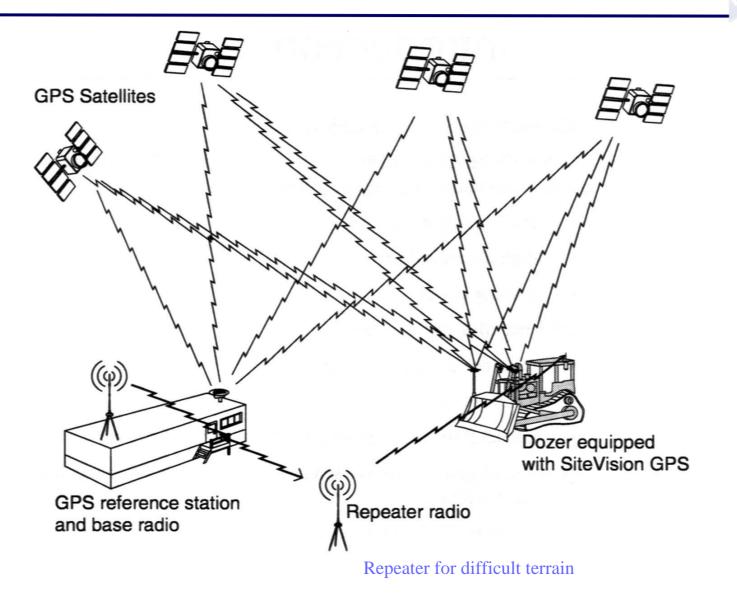
ATS600

- ATS Robotic Total Station Tracks the Position Of The Machine
- Transfers Position
 Information Via
 Radio To Operator
 Interface

Considerations when using ATS

Advantages

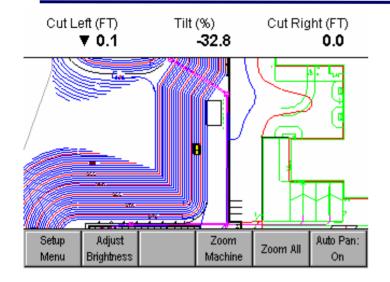
- Accurate results in the range of 0.0'/.02'
- 1000' to and from instrument for 2000' total with one instrument set up
- Easily upgraded to BladePro 3D-GPS, single antenna variant


Disadvantages

- Must be line of sight to the machine
- Controls only <u>ONE</u> machine
- Gun must be protected from being run over
- Requires a .PRO file format from Terramodel
- Range is effected by fog, dust, snow or heavy rain

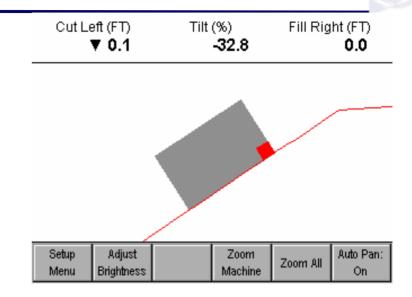
SiteVision GPS

Real Time Kinemetic GPS



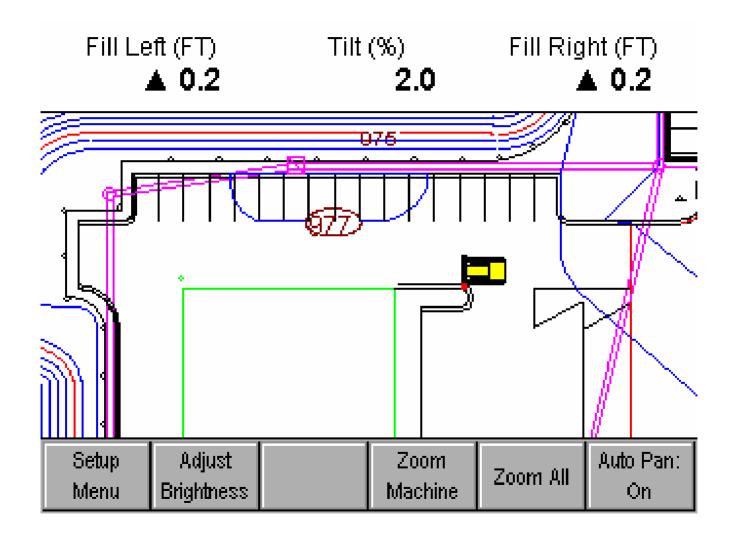
The Global Positioning System (GPS) is used to...

Accurately position the grading machine
 <u>BLADE</u>, on the 3D digital model of the project

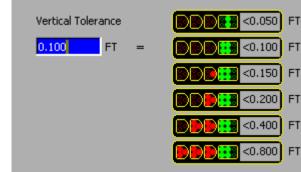

- Within 1cm in X and Y
- Within 1-3 cm in Z = 1.18 of an inch
- Old school one tenth = 1.2 of an inch
- This puts the blade on the design, precisely located in 3D

Four screens available to the operator

Cut Left (FT)	▼ 0.1
Cut Right (FT)	0.0
Design Elev (FT)	975.0
Tilt (%)	-32.8
Satellites	7


Setup Adjust Menu Brightness			
---------------------------------	--	--	--

Northing (FT)	10381.8
Easting (FT)	9937.8
Elevation (FT)	645.4
GPS Status	High Accuracy
Satellites	9


Blade:	V. Offset	:	Design:
Left	0.000FT		Good Surf

Guidance to Any plan Line

Scaleable Lightbars

Lightbar Scales

Vertical Horizontal	Half Set 0.050	Double Set 0.200	
---------------------	-------------------	---------------------	--

FT

FT FT

FT

Two 13" GPS antennas

Why Two GPS Antennas?

Summary - Two Antennas

Gives You:

- Most Accurate Solution!
- Cuts/Fills calculated along the entire blade cutting edge, from the right tip all the way to the left tip (no matter how the blade is tilted or rotated)
- Always know which way the machine is facing and moving. (operator must tell the system which direction with single antenna)
- No need for rotation or tilt sensors that are affected by vibration (especially on dozers)
- No daily/weekly/monthly calibration of sensors

TWO ANTENNA'S

Dozers D3-D11 manual and automatic

Blades-manual and automatic



Grade checker's rover

GPS Rover

Considerations when using GPS Technology

Advantages

- Places the design in front of the operator.
- Unlimited machines
 possible on one base
- Line of sight not required
- Dramatically increases production
- Dramatically reduces labor costs-layout,stakes
- Not effected by fog, dust etc.
- Operators love to use it!

Disadvantages

- You need a clear view of the sky
 - Tree canopy
 - Tall buildings
 - Blocking terrain
- Requires a local "champion" to manage-
 - Data and site Cal
 - Radio coverage
 - Proper application requiring attention
 - PDOP issues

GPS Technology Gains Construction Phase

GPS technology	Compared with	Estimated savings
Grade Checking	Manual method	Up to 66%
Reduction or Elimination of Stakes	Using stakes	Up to 85%
Improved material yields/select	Overruns using manual	3% to 6% in volume
fills/undercutting	methods	
Un-interrupted earth moving production	Daytime / fine weather	30% to 50%
under any weather conditions (24/7)	operation only/night work	
RTK, robotics stakeout	Traditional survey	More than 100% in speed
	stakeout	and 66% in staffing

Other savings from:

- Improved utilization of equipment/30%
- Lower skill level required
- Erosion control as you go

Process of 3D Machine Control Systems

Know your contract specifications and tolerances

- BP3D tolerances are $\pm 0.02'$ (@ 750' from the total station) and $\pm 0.10'$ (@ 1000' from the total station)
- GPS tolerances are <u>+</u> 0.10' (Horizontal and Vertical on the machine)

Process of 3D Machine Control Systems

- What is your plus / minus grade and elevation tolerances?
 - How do you meet or exceed these tolerances?
 - Can 3D Machine Control systems compliment this task?
- Trained foreman and supporting cast
- Increased efficiency and cost reduction results from improving the overall process

Process of 3D Machine Control Systems

• How to get up and running faster

- E Fully committed to the process
- Draw upon experienced resources
- Stay the course and be willing to follow through the learning curve
- v. Job planning
- v. Do not panic!

QUESTIONS?

