

EMBEDDED DATA COLLECTORS

Florida Experience with **Embedded Data Collectors**

Rodrigo Herrera, PE Florida Department of Transportation Asst. State Geotechnical Engineer

July 25, 2013

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

Introduction

- Majority of Florida bridges are supported on deep foundations
- Most common deep foundation:
 - Precast Prestressed Concrete Piles
- Dynamic testing of all Test Piles required as per specifications

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

1995 FDOT Practice

- Pile Installation Plan (Contractor)
- Pre-field wave equation analysis
- Test Pile program
 - PDA
 - CAPWAP
 - Final wave equation
 - Driving Criteria
- Install Production Piles

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

Driving Criteria

- The Driving Criteria letter as a minimum addresses the following items:
 - Minimum number of blows per foot at various hammer stroke heights for the bearing layer
 - Maximum allowable stroke height
 - Minimum tip
 - Refusal conditions
 - Set-check requirements (when needed)

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

In 1996 we were asking WHAT IF?

- What if piles could be instrumented without climbing the leads?
- What if pile testing did not impact construction operations?
- What if all foundations could be monitored instead of issuing blow count criteria?
- What if all of this was affordable?

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

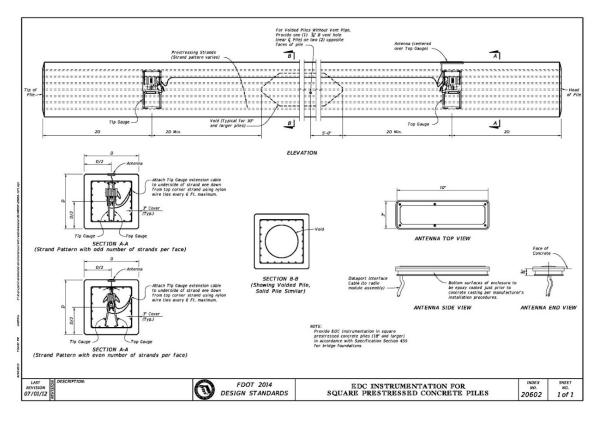
Rodrigo Herrera, PE FDOT July 25, 2013

FDOT Sponsored Research

- Alternate dynamic testing method investigated by UF through FDOT sponsored research 1997-2002
- University of Florida's final report issued August 2002
 - Proposed theory for the use of two levels of instruments
 - First generation hardware and software

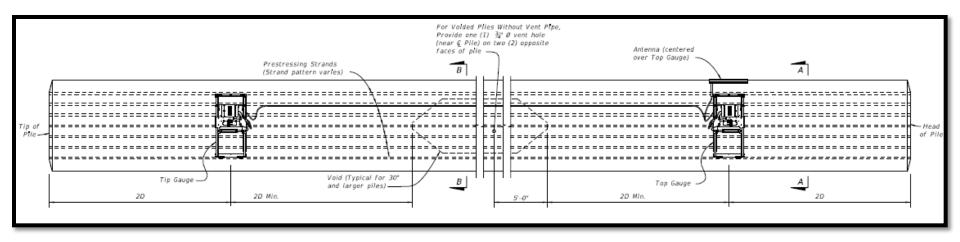
EMBEDDED DATA COLLECTORS

Embedded Data Collectors


Rodrigo Herrera, PE FDOT July 25, 2013

FDOT Sponsored Research

- In 2003 Smart Structures, Inc. acquired a license to the patented technology
- Advancements to the hardware and signal transmission aspects of the system

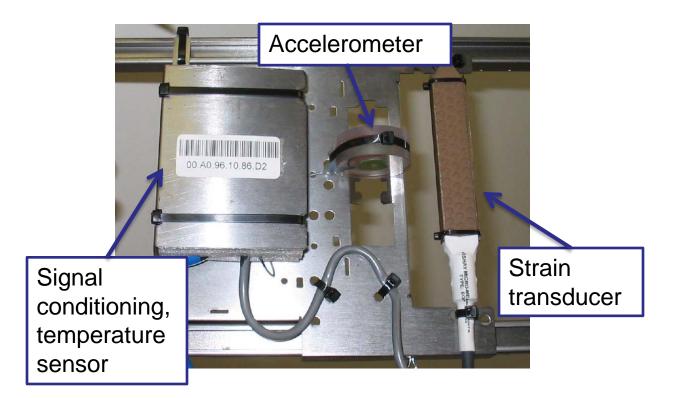

FDOT Design Standards Index 20602

This is a sample image. Similar documentation will be posted to the TIG Embedded Data Collectors website in the near future.

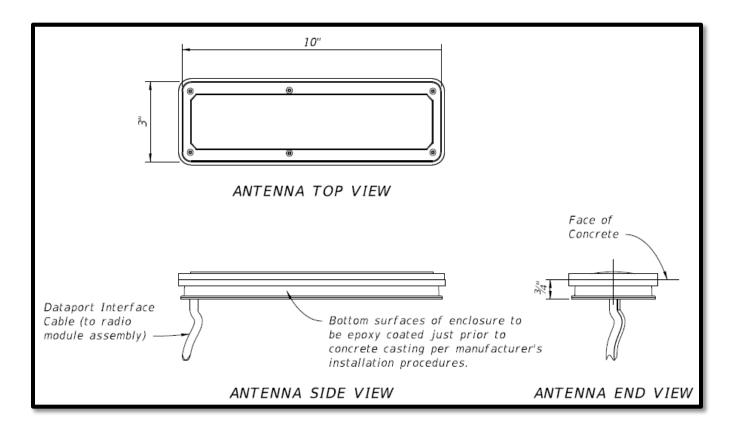
Embedded Data Collector

- Instruments cast into solid concrete piles
- Two instrumentation levels, pile head and tip

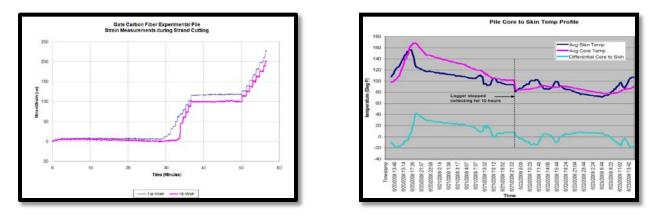
This is a sample image. Similar documentation will be posted to the TIG Embedded Data Collectors website in the near future.


Casting Process

- Instrumentation
 - Tip gages
 - Connector cable (within the pile)
 - Top gages and antenna



Embedded Data Collector



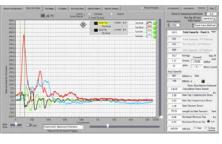
Casting Process

Casting Yard Measurements

- Install two levels of instruments prior to casting the pile
 - Get an initial measurement to confirm signal transmission
 - Cast the pile
 - Subsequent measurements
 - Strain before and after cutting pre-stressing strands
 - Temperature readings at pile core and antenna (ambient)

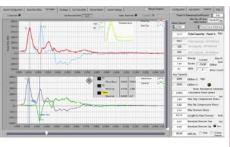
This is a sample image. Similar documentation will be posted to the TIG Embedded Data Collectors website in the near future.

EMBEDDED DATA COLLECTORS


Casting Yard Battery Pile Driving Battery

EMBEDDED DATA COLLECTORS

Software Interface

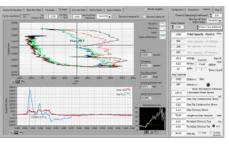

- Display of raw data
 - Strain and acceleration
 - Qualitative assessment of data

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

EMBEDDED DATA COLLECTORS

Software Interface


- Display of top level instrumentation
 - Force-Velocity
 - Wave up / Wave down
 - Pile static capacity
 - Compression and tension stresses
 - Estimates of pile integrity (MPI)

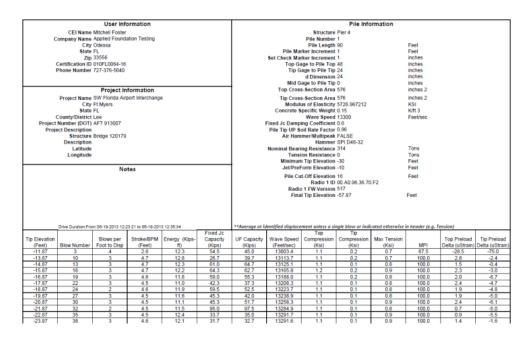
Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

EMBEDDED DATA COLLECTORS

Software Interface

- Tip instrumentation readings
 - Measured compressive stress near the pile tip
 - Total, dynamic, inertial and static components of the measured force
 - Force-velocity


Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

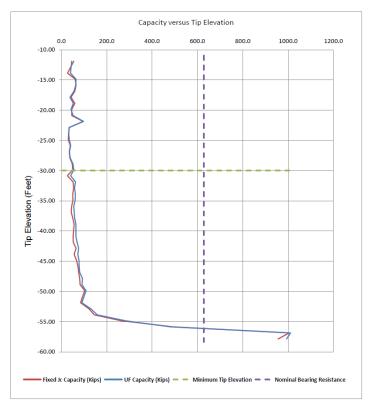
EMBEDDED DATA COLLECTORS

Software Output

- Summary Table
 - Project information
 - Blows/ft
 - UF method (resistance)
 - Stresses
 - Energy
 - Stroke
 - Integrity
 - Other...

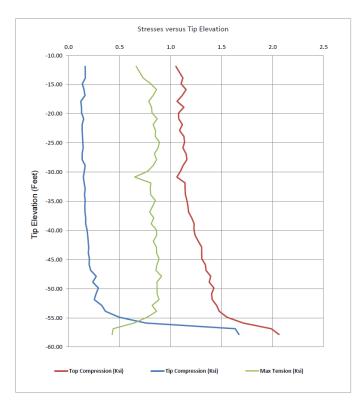
This is a sample image. Similar documentation will be posted to the TIG Embedded Data Collectors website in the near future.

EMBEDDED DATA COLLECTORS


Software Output

User Information					Pile Information								
User Information CEI Name Company Name City State Zip Certification ID Phone Number Project Information Project Name City State City State				Pile Information Structure Pier 4 Pile Number 1 Pile Number 1 Pile Length 90 Feet Pile Marker Increment 1 Feet Set Check Marker Increment 1 Top Gage to Pile Tip 24 inches Tip Gage to Pile Tip 24 inches d Dimension 24 inches Top Cross-Section Area 576 inches 2 Top Cross-Section Area 576 inches 2 Modulus of Elasticity 5726.567212 KSI Concrete Specific Weight 0.15 Wave Speed 13300 Feet/sec									
Project Number (DOT) Project Description Structure Description Latitude Longitude Notes				Fixed Jc Damping Coefficient 0.6 Pile Tip UP Soil Rate Factor 0.96 Airt Hammer/Multipeak FALSE Hammer SPI D46-32 Nominal Bearing Resistance 314 Tons Tension Resistance 0 Tons Minimum Tip Elevation -30 Feet Jet/Preform Elevation -10 Feet Pile Cut-Off Elevation 16 Feet Radio 11 D0.A0.96.36.70.F2 Radio 1 FW Version 0517									
Drive Duration:From 06-19-2013 12:23:21 to 06-19-2013 12:35:34					Final Tip Elevation -57.87 Feet **Average at identified displacement unless a single blow or indicated otherwise in header (e.g. Tension)								
Tip Elevation		Blows per	Stroke/BPM	Energy (Kips-	Fixed Jc Capacity	UF Capacity	Wave Speed	Top Compression	Tip Compression	Max Tension		Top Preload	Tip Preload
(Feet)	Blow Number	Foot to Disp	(Feet)	ft)	(Kips)	(Kips)	(Feet/sec)	(Ksi)	(Ksi)	(Ksi)	MPI	Delta (uStrain)	
-11.87	3	4	2.6	12.3	54.5	45.0	13003.4	1.1	0.2	0.7	87.5	-28.5	-75.0
-13.87	10	3	4.7	12.8	26.7	39.7	13113.7	1.1	0.2	0.7	100.0	2.8	-2.4
-14.87	13	3	4.7	12.3	61.0	64.7	13125.1	1.1	0.1	0.8	100.0	1.5	-0.4
-15.87	16	3	4.7	12.2	64.3	62.7	13165.8	1.2	0.2	0.9	100.0	2.3	-3.0
-16.87	19	3	4.6	11.6	59.0	55.3	13188.0	1.1	0.2	0.8	100.0	2.0	-6.7
-17.87	22	3	4.5	11.0	42.3	37.3	13208.3	1.1	0.1	0.8	100.0	2.4	-4.7
-18.87	24	2	4.6	11.9	59.5	52.5	13223.7	1.1	0.1	0.8	100.0	1.9	-4.8

This is a sample image. Similar documentation will be posted to the TIG Embedded Data Collectors website in the near future.


Software Output

This is a sample image. Similar documentation will be posted to the TIG Embedded Data Collectors website in the near future. *UF* and *Fixed* methods*Minimum* Tip*NBR*

Software Output

This is a sample image. Similar documentation will be posted to the TIG Embedded Data Collectors website in the near future.

- Top and Tip compressive stresses
- Max. Tension

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

Calculation Methods

- Fixed Case Method
 - Constant damping factor for the entire drive, input by operator
 - Only top level of instruments
- UF Method
 - Damping factor is calculated for every hammer blow using pile top and tip measured data

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

Calculation Methods

- UF Method Continued
 - Allows for the separation of static and dynamic resistance in real time, no signal match analysis required on an instrumented pile
 - Computes the contribution of end bearing and side friction to total resistance using both top and tip instrumentation

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

Evaluating Results

- Phase I, In-House evaluation (2006-2010)
 - Compare EDC estimates to PDA & CAPWAP
- Phase II, UF (2009 Present)
 - Collect results and generate a database of EDC vs. static load tests to develop a system-specific resistance factor for use in LRFD design

EMBEDDED DATA COLLECTORS

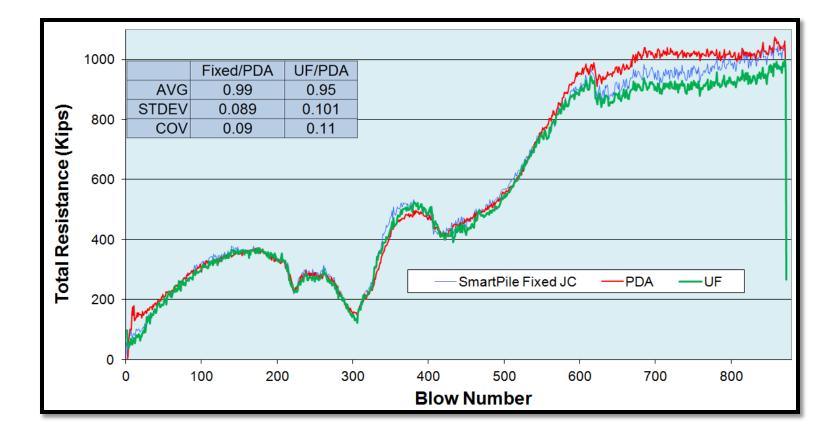
Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

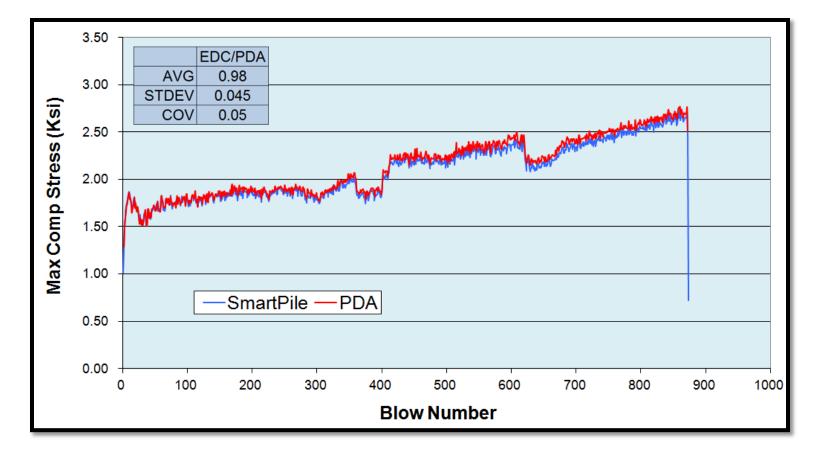
Evaluating Results

- Phase 1: Compare EDC to PDA and CAPWAP
 - Database of piles monitored simultaneously with EDC and PDA
 - EDC data was collected and reported by different engineers than those collecting the PDA data

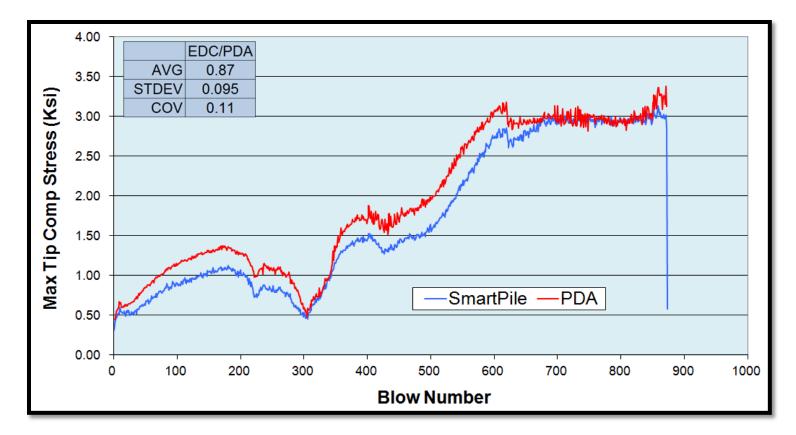
EMBEDDED DATA COLLECTORS

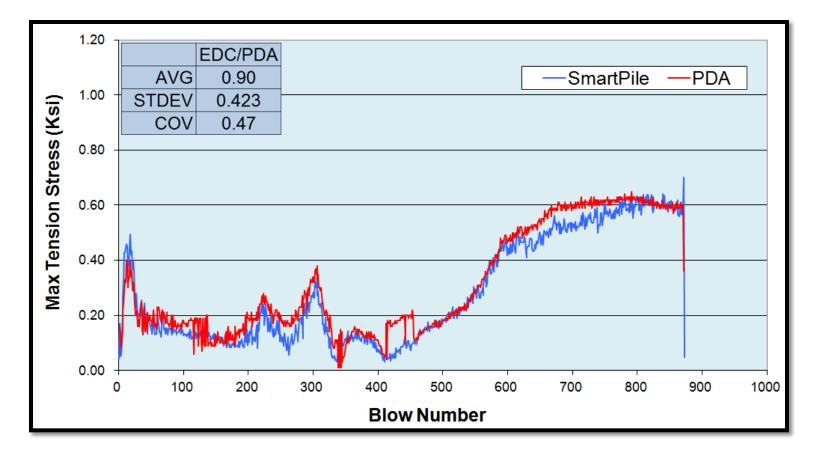

Embedded Data Collectors

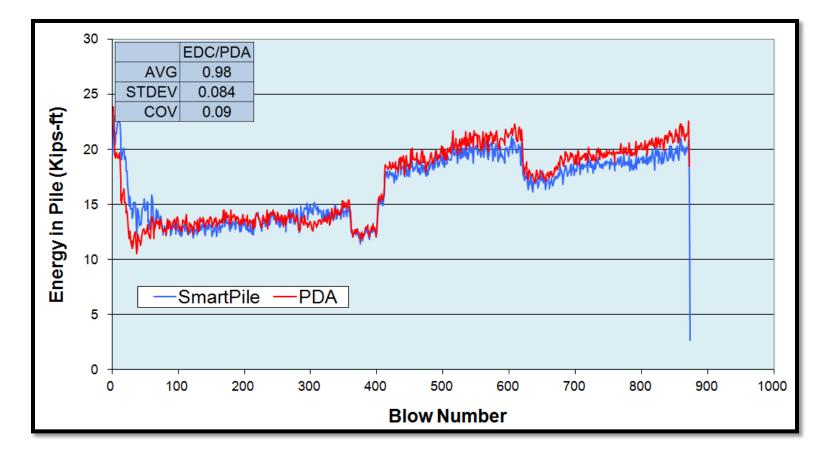
Rodrigo Herrera, PE FDOT July 25, 2013

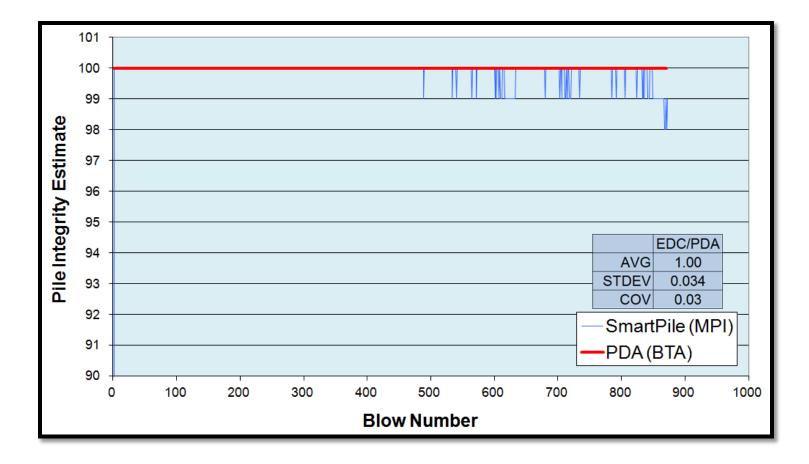

Evaluating Results

- Phase 1: Compare EDC to PDA and CAPWAP
 - Neither engineer would see the other's data until test pile program was completed and both reports turned in



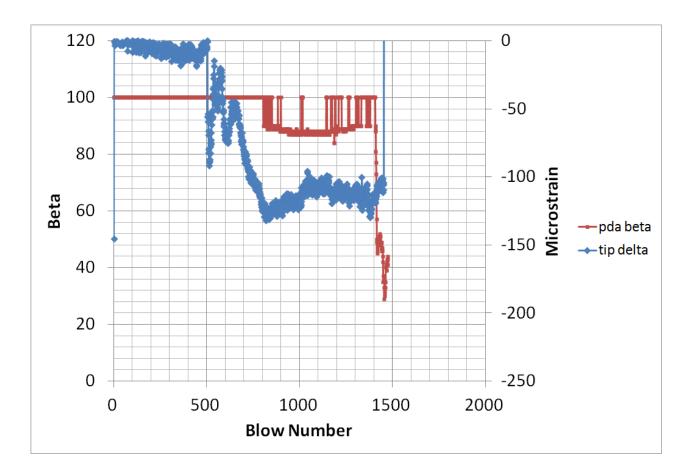






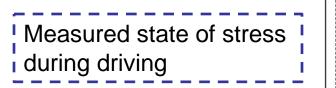
EDC/PDA Static Capacity

Population "n" = 213,734 blows from 139 piles


Ratio of Total Static Resistance							
Parameter	Fixed Method/PDA	UF Method/PDA					
Mean	0.89	0.91					
Median	0.93	0.91					
Standard Deviation	0.15	0.16					
Coefficient of Variation	0.17	0.18					

· · ·								
STRESS, ENERGY AND INTEGRITY								
EDC/PDA								
	CSX	CSB	TSX	EMX	Beta			
Mean	0.92	0.75	0.89	0.95	0.96			
Median	0.93	0.75	0.90	0.93	0.99			
Std. Deviation	0.09	0.18	0.26	0.24	0.12			
Coefficient of Variation	0.1	0.24	0.29	0.25	0.12			

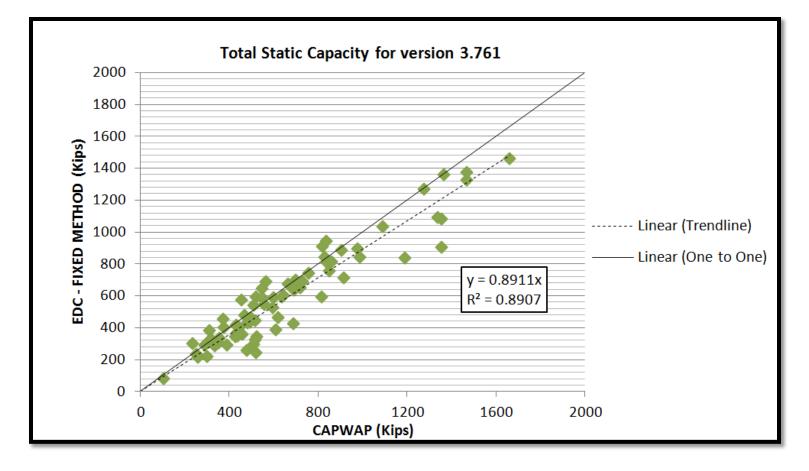
TIP Damage Indicator

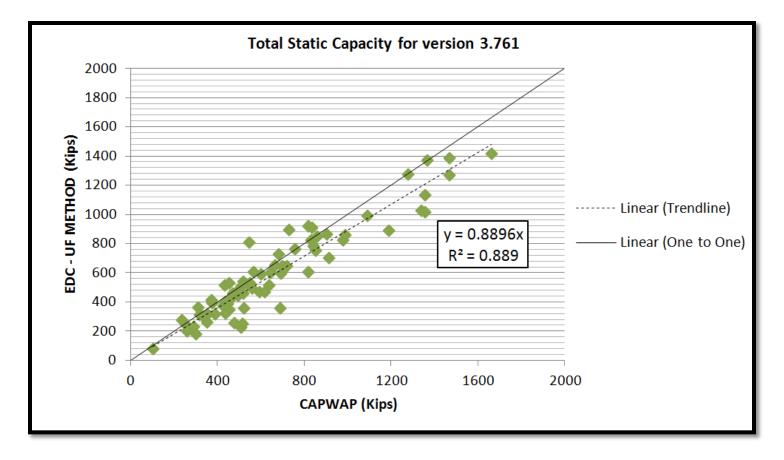


EMBEDDED DATA COLLECTORS

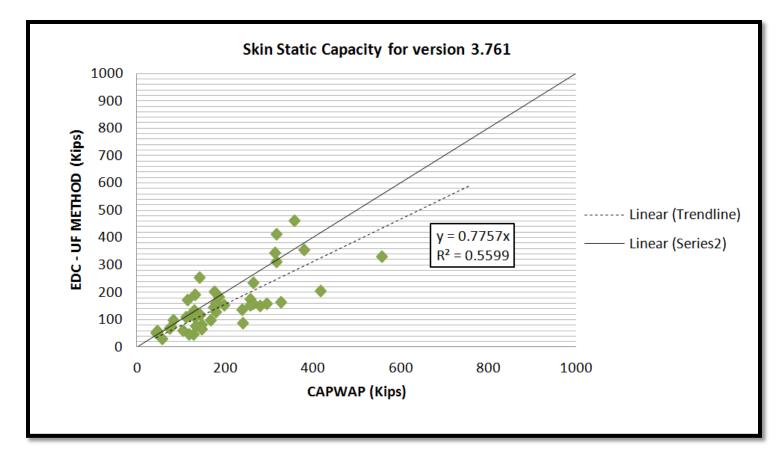
TIP Damage Indicator

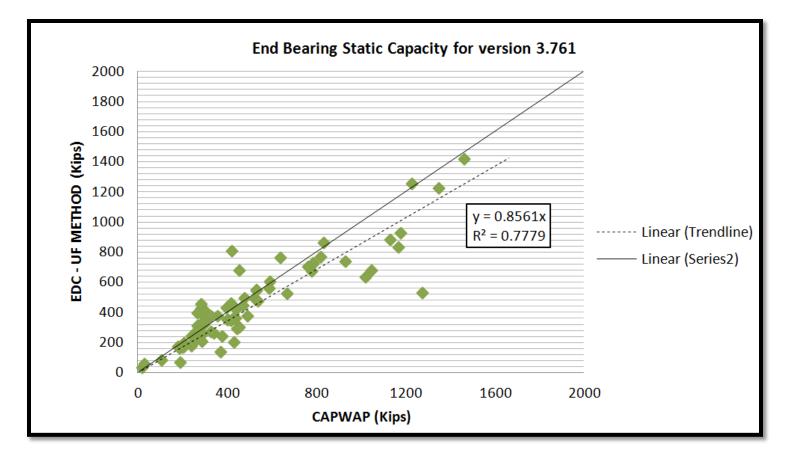
- Changes in measured strain;
 - Observed more often near the tip of the pile
 - Gradual loss of pre-stress as a precursor to damage




EDC/CAPWAP Static Capacity

Ratio of Total Static Resistance		
Parameter	Fixed Method/CAPWAP	UF Method/CAPWAP
Mean	0.88	0.86
Median	0.92	0.90
Standard Deviation	0.21	0.22
Coefficient of Variation	0.24	0.26





EDC Evaluation – Phase I

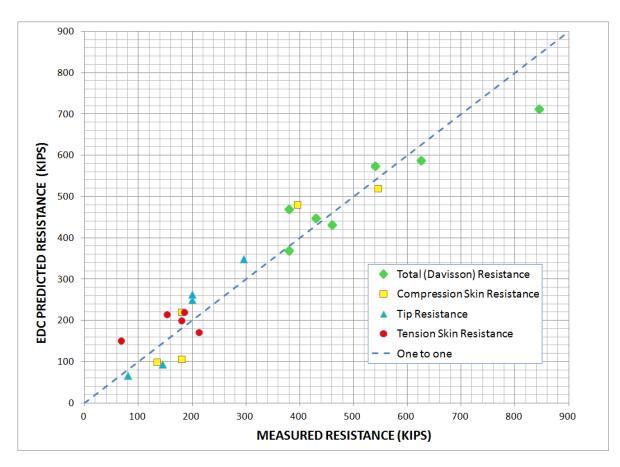
- Partial findings published in the proceedings of the 2009 International Foundation Congress and Equipment Expo
 - Blows with PDA estimate > 50 tons
 - Data within three standard deviations from the mean used in the development of statistical parameters

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

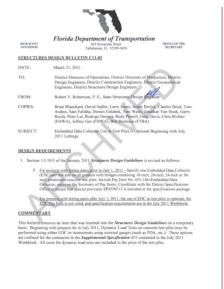
EMBEDDED DATA COLLECTORS

Embedded Data Collectors


Rodrigo Herrera, PE FDOT July 25, 2013

Evaluating Results

- Phase 2: Compare EDC to Static Load Tests
 - 12 Load Tests (7 compression and 5 tension)
 - 8 in Florida
 - 4 in Louisiana
 - More to come...



Evaluating Results

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

Implementation

- Design Bulletins issued on 2006, 2009 and 2010 addressing the use of EDC in test and production piles
- Collect sufficient data to evaluate the system

FLORIDA DEPARTMENT OF TRANSPORTATION

Standard Specifications for Road and Bridge Construction

2013

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

Implementation

- July 2011 Workbook
 - EDC introduced as a stand-alone system
 - Effective for projects let after January 2012
- 2013 Standard Specifications

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

EDC Evaluation

- Summary
 - Technology developed initially through FDOT funded research
 - UF Dr. Michael McVay
 - Evaluation and stepped implementation of the system by FDOT between 2006 and 2011

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

EDC Evaluation

- Summary
 - Comparisons of total static capacity indicate that both UF and Fixed methods generally trend conservatively when compared to PDA and CAPWAP with averages near 86% and COV under 0.26

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT July 25, 2013

AASHTO-TIG

Thank you!

Rodrigo.Herrera@dot.state.fl.us