

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Florida's Experience Presented by: Rodrigo Herrera, PE Florida Department of Transportation Asst. State Geotechnical Engineer

August 27, 2013

EMBEDDED DATA COLLECTORS

INTRODUCTION

- Majority of Florida bridges are supported on deep foundations
- Most common deep foundation:
 Precast Prestressed Concrete piles
- Dynamic testing of all Test Piles required as per Specifications

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

1995 FDOT PRACTICE

- Pile Installation Plan (Contractor)
- Pre-field wave equation analysis
- Test Pile program
 - PDA
 - CAPWAP
 - Final wave equation
 - Driving Criteria
- Install Production Piles

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

DRIVING CRITERIA

- The Driving Criteria letter as a minimum addresses the following items;
 - Minimum number of blows per foot at various hammer stroke heights for the bearing layer
 - Maximum allowable stroke height
 - Minimum tip
 - Refusal conditions
 - Set-check requirements (when needed)

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

In 1996 we were asking WHAT IF?

- What if piles could be instrumented without climbing the leads?
- What if pile testing did not impact construction operations?
- What if all foundations could be monitored instead of issuing blow count criteria?
- What if all of this was affordable?

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

FDOT Sponsored Research

- Alternate dynamic testing method investigated by UF through FDOT sponsored research 1997-2002
- University of Florida's Final report issued August 2002
 - Proposed theory for the use of two levels of instruments
 - First generation hardware and software

EMBEDDED DATA COLLECTORS

FDOT Sponsored Research

- In 2003 Smart Structures, Inc. acquired a license to the patented technology
- Advancements to the hardware and signal transmission aspects of the system

Embedded Data Collectors

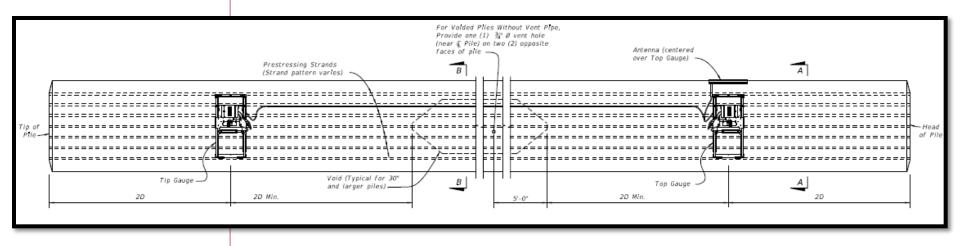
EMBEDDED DATA COLLECTORS

FDOT Design Standards Index 20602

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

EMBEDDED DATA COLLECTOR



EMBEDDED DATA COLLECTORS

EMBEDDED DATA COLLECTOR

- Instruments cast into solid concrete piles;
- Two instrumentation levels, pile head and tip

Embedded Data Collectors

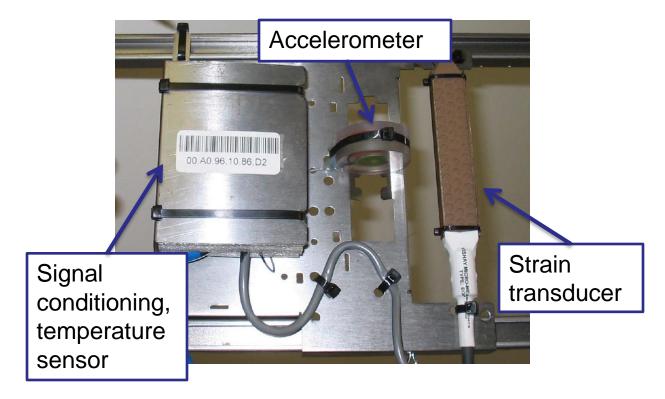
EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

CASTING PROCESS

- Instrumentation
 - Tip gages
 - Connector cable (within the pile)
 - Top gages and antenna

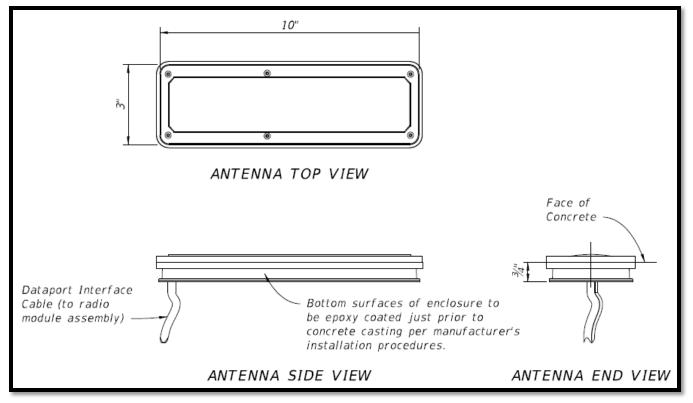

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

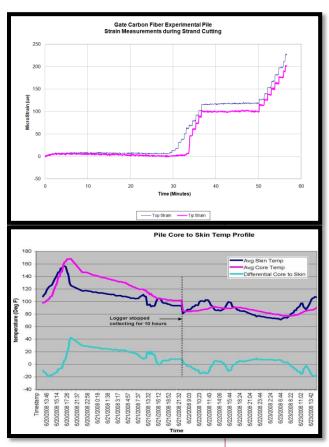
EMBEDDED DATA COLLECTOR

EMBEDDED DATA COLLECTORS



Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013


CASTING PROCESS

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

CASTING YARD MEASUREMENTS

- Install two levels of instruments prior to casting the pile
 - Get an initial measurement to confirm signal transmission
 - Cast the pile
 - Subsequent measurements
 - » Strain before and after cutting prestressing strands
 - » Temperature readings at pile core and antenna (ambient)

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

Casting Yard Battery Pile Driving Battery

EMBEDDED DATA COLLECTORS

Secretary for final days and the secretary for final days are secretary fo

SOFTWARE INTERFACE

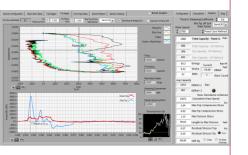
- Display of raw data;
 - Strain and acceleration
 - Qualitative assessment of data

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

The control of the co

SOFTWARE INTERFACE


- Display of top level instrumentation;
 - Force-Velocity
 - Wave up / Wave down
 - Pile static capacity
 - Compression and tension stresses
 - Estimates of pile integrity (MPI)

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

SOFTWARE INTERFACE

- Tip instrumentation readings;
 - Measured compressive stress near the pile tip
 - Total, dynamic, inertial and static components of the measured force
 - Force-velocity

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

SOFTWARE OUTPUT

- Summary Table
 - Project information
 - Blows/ft
 - UF method (resistance)
 - Stresses
 - Energy
 - Stroke
 - Integrity
 - Other...

User Information				Pile Information									
CEI Name Mitchell Foster				Structure Pier 4									
Company Name Applied Foundation Testing				l	Pile Number 1								
City Odessa					Pile Length 90				Feet				
	State					l		rker Increment			Feet inches		
		33556				l		rker Increment					
	Certification ID Phone Number					Top Gage to Pile Top 48				inches inches inches			
	Phone Number	727-376-5040				d Dimension 24							
		Project In	formation			ł		s-Section Area			inches 2		
	D1	SW Florida Air				l		s-Section Area			inches 2		
		Ft Myers	port interchange	,		I		s-Section Area us of Elasticity			inches 2 KSI		
	State					I		pecific Weight			K/ft 3		
	County/District					I	Contrate 5	Wave Speed			Feet/sec		
	Number (DOT)					I	Fixed Jc Dampi	ing Coefficient					
Proje	ect Description					I		oil Rate Factor					
		Bridge 120179				Air Hammer/Multipeak FALSE							
	Description					Hammer SPI D46-32							
	Latitude					Nominal Bearing Resistance 314 Tons							
	Longitude					Tension Resistance 0 Minimum Tip Elevation -30 Jat/PreForm Elevation -10				Tons Feet Feet			
		No	tes										
						Pile Cut-Off Elevation 16 Feet Radio 1 ID 00.40.96.36.70 F2							
						Radio 1 FW Version 517							
						Final Tip Elevation -57.87 Feet							
						Time Tip Exercises -07.07							
						**Average at identified displacement unless a single blow or indicated otherwise in header (e.g. Tension)							
	Drive Duration:Fro	m 06-19-2013 12:	3:21 to 06-19-201	3 12:35:34	Fixed Jc	**Average at is	lentified displace	ment unless a si	ngle blow or indi	cated otherwise	in header (e.g.)	ension)	
Tip Elevation		Blows per	Stroke/DDM	Energy (Kips-	Capacity	UF Capacity	Wave Speed		Compression	May Tension	I	Top Preload	Tip Preload
(Feet)	Blow Number	Foot to Disp	(Feet)	Energy (Kips-	(Kips)	(Kips)	(Feet/sec)	(Ksi)	(Ksi)	(Ksi)	MPI	Delta (uStrain)	
-11.87	3	4	2.6	12.3	54.5	45.0	13003.4	1.1	0.2	0.7	87.5	-28.5	-75.0
-13.87	10	3	4.7	12.8	26.7	39.7	13113.7	1.1	0.2	0.7	100.0	2.8	-2.4
-14.87	13	3	4.7	12.3	61.0	64.7	13125.1	1.1	0.1	0.8	100.0	1.5	-0.4
-15.87	16	3	4.7	12.2	64.3	62.7	13165.8	1.2	0.2	0.9	100.0	2.3	-3.0
-16.87 -17.87	19	3	4.6	11.6	59.0 42.3	55.3 37.3	13188.0	1.1	0.2	0.8	100.0	2.0	-6.7 -4.7
-17.87 22 3 4.5 11.0 42.3 -18.87 24 2 4.6 11.9 59.5				37.3 52.5	13208.3	1.1	0.1	0.8	100.0	2.4	-4.7 -4.8		
-19.87	27	2	4.5	11.9	45.3	42.0	13223.7	1.1	0.1	0.8	100.0	1.9	-5.0
-19.87	30	3	4.5	11.1	45.3	51.7	13258.3	1.1	0.1	0.0	100.0	2.4	-6.1
-21.87	32	2	4.5	11.5	95.0	97.5	13284.9	1.1	0.1	0.8	100.0	0.7	-5.0
-22.87	35	3	4.5	12.4	33.7	35.0	13291.7	1,1	0.1	0.9	100.0	0.9	-5.5
-23.87	38	3	4.6	12.1	31.7	32.7	13291.6	1.1	0.1	0.9	100.0	1.4	-1.6

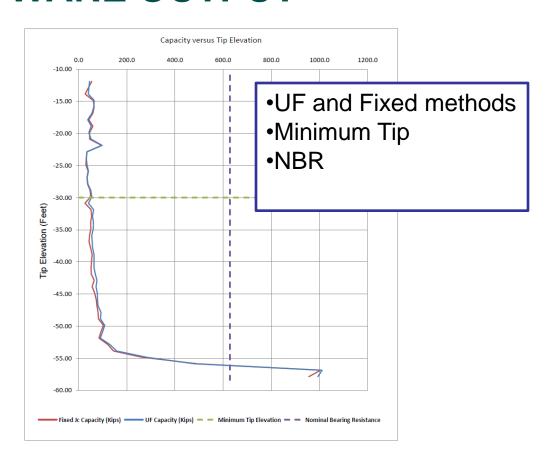
Embedded Data Collectors

EMBEDDED DATA COLLECTORS

User Information	Pile Informati	Pile Information				
CEI Name	Structure Pier 4	Structure Pier 4				
Company Name	Pile Number 1					
City	Pile Length 90	Feet				
State	Pile Marker Increment 1	Feet				
Zip	Set Check Marker Increment 1	inches				
Certification ID	Top Gage to Pile Top 48	inches				
Phone Number	Tip Gage to Pile Tip 24	inches				
	d Dimension 24	inches				
	Mid Gage to Pile Tip 0	inches				
Project Information	Top Cross-Section Area 576	inches 2				
Project Name	Tip Cross-Section Area 576	inches 2				
City	Modulus of Elasticity 5726.967212	KSI				
State	Concrete Specific Weight 0.15	K/ft 3				
County/District	Wave Speed 13300	Feet/sec				
Project Number (DOT)	Fixed Jc Damping Coefficient 0.6					
Project Description	Pile Tip UP Soil Rate Factor 0.96					
Structure	Air Hammer/Multipeak FALSE					
Description	Hammer SPI D46-32					
Latitude	Nominal Bearing Resistance 314	Tons				
Longitude	Tension Resistance 0	Tons				
	Minimum Tip Elevation -30	Feet				
Notes	Jet/PreForm Elevation -10	Feet				
	Pile Cut-Off Elevation 16	Feet				
	Radio 1 ID 00.A0.96.36.70.F2					
	Radio 1 FW Version 517					
	Final Tip Elevation -57.87	Feet				

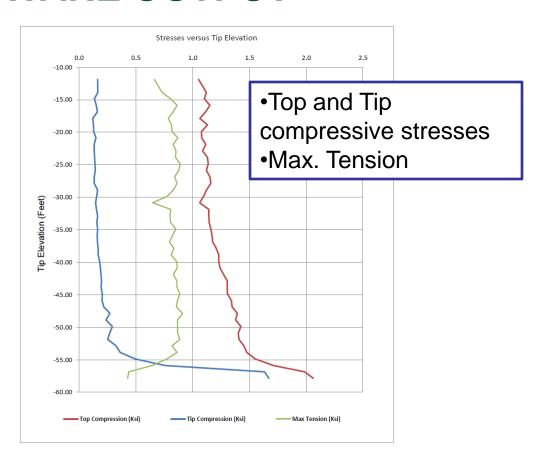
Drive Duration:From 06-19-2013 12:23:21 to 06-19-2013 12:35:34

**Average at identified displacement unless a single blow or indicated otherwise in header (e.g. Tension)


- 1			l			Fixed 3C			TOP	TIP		l		
١	Tip Elevation		Blows per	Stroke/BPM	Energy (Kips-	Capacity	UF Capacity	Wave Speed	Compression	Compression	Max Tension		Top Preload	Tip Preload
l	(Feet)	Blow Number	Foot to Disp	(Feet)	ft)	(Kips)	(Kips)	(Feet/sec)	(Ksi)	(Ksi)	(Ksi)	MPI	Delta (uStrain)	Delta (uStrain)
	-11.87	3	4	2.6	12.3	54.5	45.0	13003.4	1.1	0.2	0.7	87.5	-28.5	-75.0
	-13.87	10	3	4.7	12.8	26.7	39.7	13113.7	1.1	0.2	0.7	100.0	2.8	-2.4
[-14.87	13	3	4.7	12.3	61.0	64.7	13125.1	1.1	0.1	0.8	100.0	1.5	-0.4
	-15.87	16	3	4.7	12.2	64.3	62.7	13165.8	1.2	0.2	0.9	100.0	2.3	-3.0
	-16.87	19	3	4.6	11.6	59.0	55.3	13188.0	1.1	0.2	0.8	100.0	2.0	-6.7
	-17.87	22	3	4.5	11.0	42.3	37.3	13208.3	1.1	0.1	0.8	100.0	2.4	-4.7
	-18.87	24	2	4.6	11.9	59.5	52.5	13223.7	1.1	0.1	0.8	100.0	1.9	-4.8

EMBEDDED DATA COLLECTORS

SOFTWARE OUTPUT


Embedded Data Collectors

EMBEDDED DATA COLLECTORS

SOFTWARE OUTPUT

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

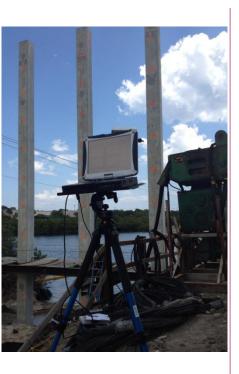
CALCULATION METHODS

- Fixed Case Method
 - Constant damping factor for the entire drive, input by operator
 - Only top level of instruments
- UF Method
 - Damping factor is calculated for every hammer blow using pile top and tip measured data

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

CALCULATION METHODS


- UF Method Continued
 - Allows for the separation of static and dynamic resistance in real time, no signal match analysis required on an instrumented pile (top & tip)
 - Computes the contribution of end bearing and side friction to total resistance using both top and tip instrumentation.

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

EVALUATING RESULTS

- Phase I, In-House evaluation (2006-2010)
 - Compare EDC estimates to PDA & CAPWAP;
- Phase II, UF (2009 Present)
 - Collect results and generate a database of EDC vs. static load tests to develop a system-specific resistance factor for use in LRFD design

EMBEDDED DATA COLLECTORS

EVALUATING RESULTS

- Phase 1: Compare EDC to PDA and CAPWAP
 - Database of piles monitored simultaneously with EDC and PDA
 - EDC data was collected and reported by different engineers than those collecting the PDA data.

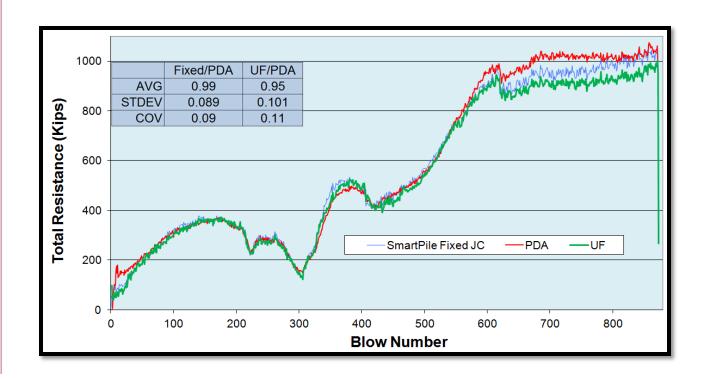
Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EVALUATING RESULTS

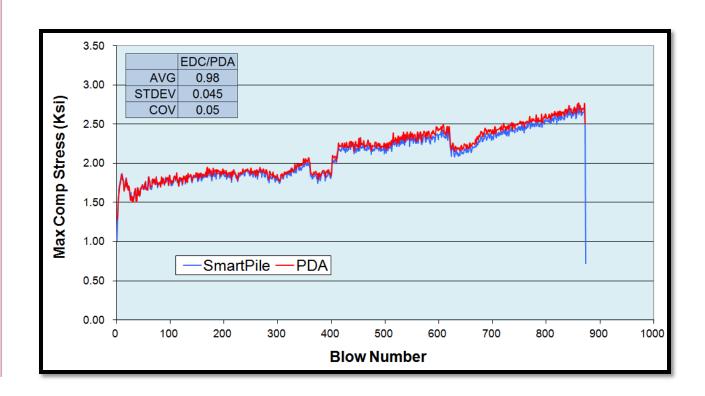
Phase 1: Compare EDC to PDA and CAPWAP

 Neither engineer would see the other's data until test pile program was completed and both reports turned in.


Embedded Data Collectors

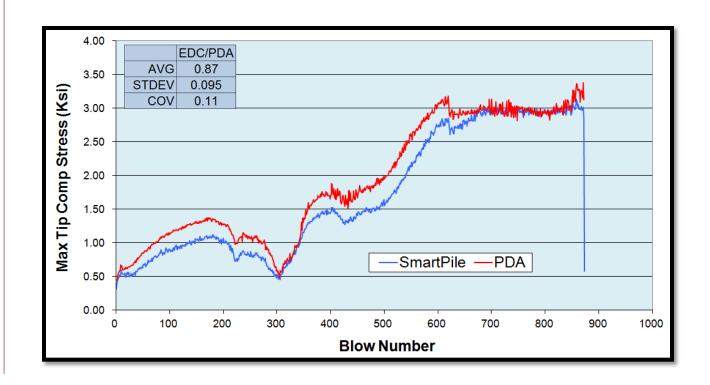
EMBEDDED DATA COLLECTORS

EDC EVALUATION – PHASE I


Embedded Data Collectors

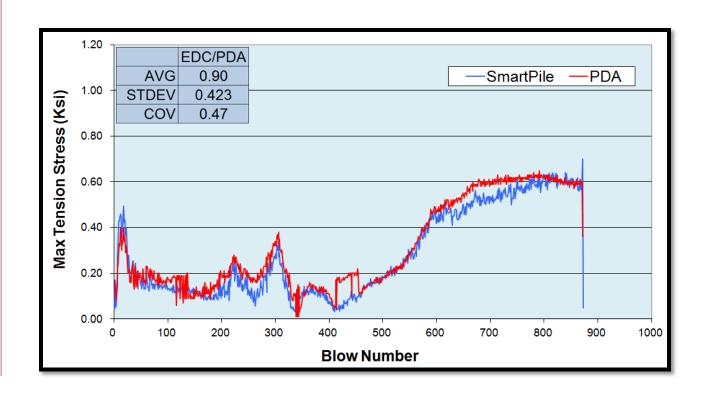
EMBEDDED DATA COLLECTORS

EDC EVALUATION – PHASE I


Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION – PHASE I


Embedded Data Collectors

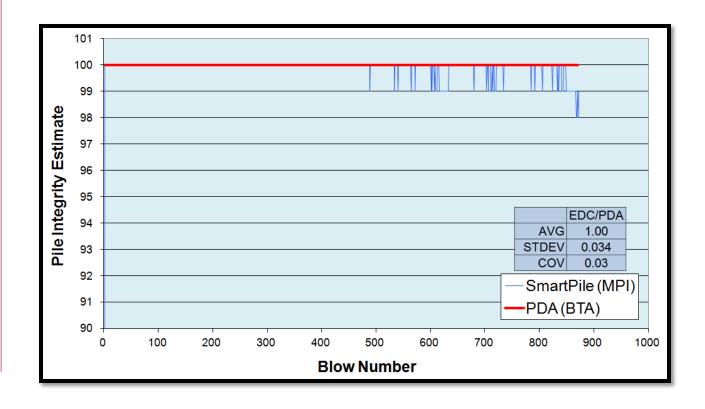
EMBEDDED DATA COLLECTORS

EDC EVALUATION – PHASE I

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION – PHASE I


Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION – PHASE I

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC/PDA STATIC CAPACITY

Population "n" = 213,734 blows from 139 piles

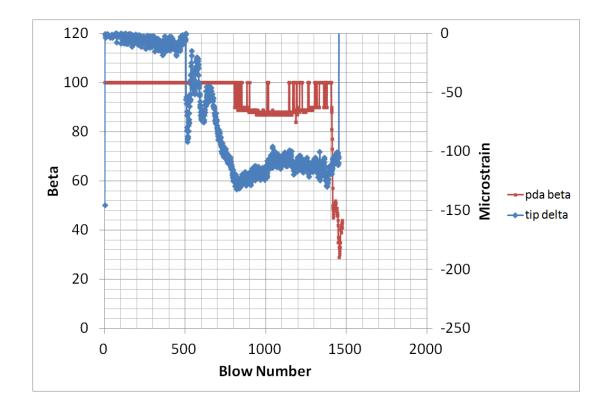
Ratio of Total Static Resistance							
Parameter	Fixed Method/PDA	UF Method/PDA					
Mean	0.89	0.91					
Median	0.93	0.91					
Standard Deviation	0.15	0.16					
Coefficient of Variation	0.17	0.18					

EMBEDDED DATA COLLECTORS

EDC EVALUATION - PHASE I

Population "n" = 205,516 blows from 134 piles

STRESS, ENERGY AND INTEGRITY										
EDC/PDA										
	Beta									
Mean	0.92	0.75	0.89	0.95	0.96					
Median	0.93	0.75	0.90	0.93	0.99					
Std. Deviation	0.09	0.18	0.26	0.24	0.12					
Coefficient of Variation	0.1	0.24	0.29	0.25	0.12					

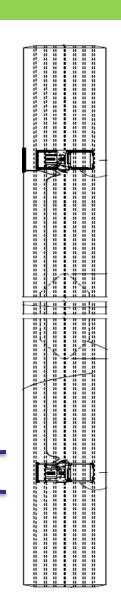


EMBEDDED DATA COLLECTORS

TIP DAMAGE INDICATOR

Embedded Data Collectors

EMBEDDED DATA COLLECTORS



TIP DAMAGE INDICATOR

- Changes in measured strain;
 - Observed more often near the tip of the pile
 - Gradual loss of pre-stress as a precursor to damage

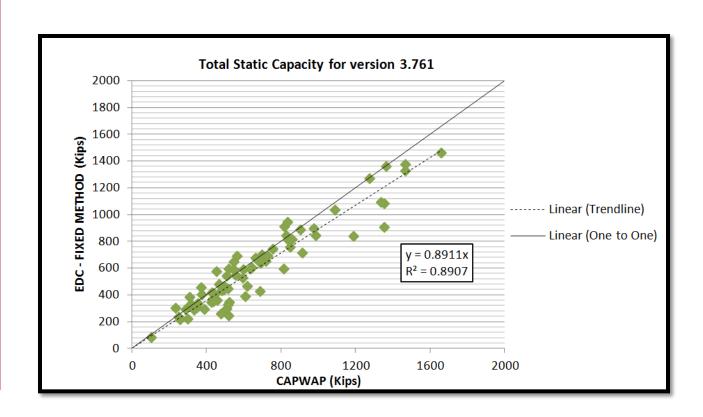
Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013 | Measured state of stress | during driving

EMBEDDED DATA COLLECTORS

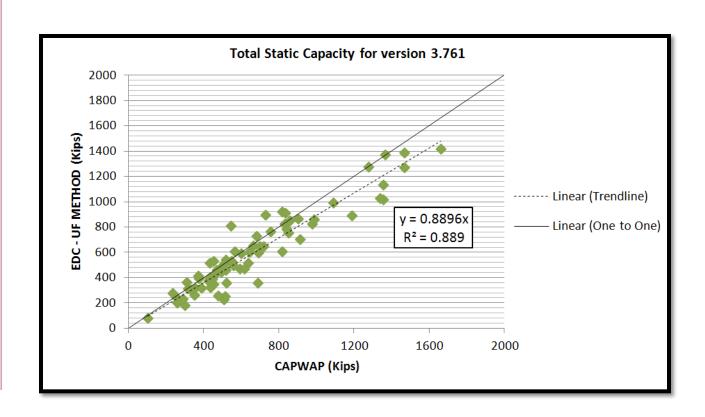
EDC/CAPWAP STATIC CAPACITY

Population "n" = 78 blows from 78 piles


Ratio of Total Static Resistance			
Parameter	Fixed Method/CAPWAP	UF Method/CAPWAP	
Mean	0.88	0.86	
Median	0.92	0.90	
Standard Deviation	0.21	0.22	
Coefficient of Variation	0.24	0.26	

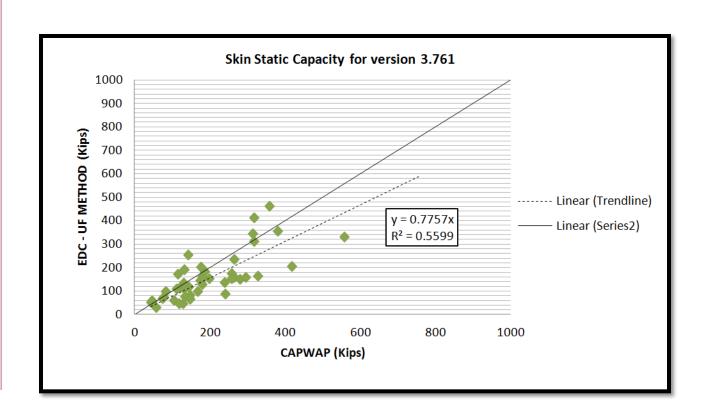
EMBEDDED DATA COLLECTORS

EDC EVALUATION - CAPWAP


Embedded Data Collectors

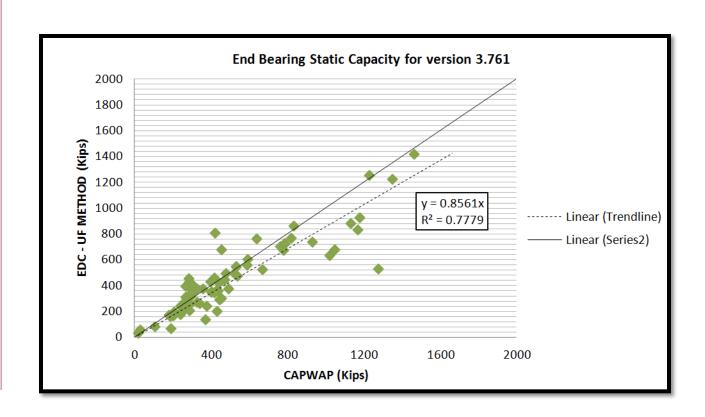
EMBEDDED DATA COLLECTORS

EDC EVALUATION - CAPWAP


Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION - CAPWAP


Embedded Data Collectors

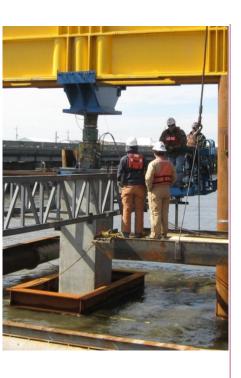
EMBEDDED DATA COLLECTORS

EDC EVALUATION - CAPWAP

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION – PHASE I


- Partial findings published in the proceedings of the 2009 International Foundation Congress and Equipment Expo
 - Blows with PDA estimate > 50 tons
 - Data within three standard deviations from the mean used in the development of statistical parameters

Embedded Data Collectors

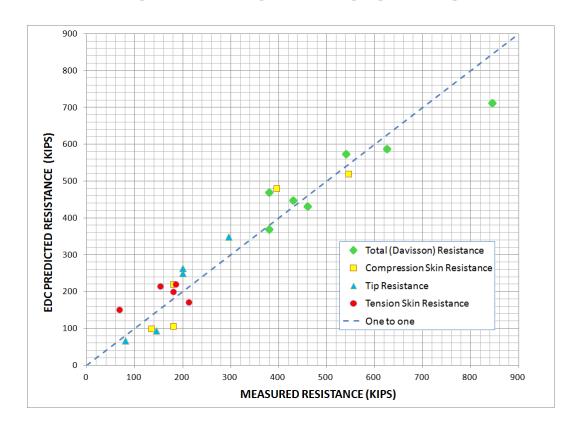
EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

EVALUATING RESULTS

- Phase 2: Compare EDC to Static
 Load Tests
 - 12 Load Tests (7 compression and 5 tension)
 - 8 in Florida
 - 4 in Louisiana
 - More to come…


EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

EVALUATING RESULTS

EMBEDDED DATA COLLECTORS

Florida Department of Transportation 665 Sources Roset Talkabasse, 11, 2299-6459 STRECTURES DESIGN BILLETED DATE: March 31, 2011 TO: District Directive of Operations, District Directives of Psychiction, Butter Design Engineers, District Construction Engineers, District Geneticability Design Engineers, District Construction Engineers, District Geneticability Design Engineers, District Structures Design Engineers FROM: Robert V. Roberton, P. E., State Structures Design Engineers FROM: Robert V. Roberton, P. E., State Structures Design Engineers Design Engineers, District Structures Design Engineers FROM: Robert V. Roberton, P. E., State Structures Design Engineers FROM: Robert V. Roberton, P. E., State Structures Design Engineers Rodice, Sam Fallah, Demais Goldsche, Fundam (Parks), Charles Boyd, Tora Andrees, Sam Fallah, Demais Goldsche, Fundam (Parks), Charles Rodice, Sam Fallah, Demais Goldsche, Fundam (Parks), Alberton, Charles Rodice, Fundam (Parks), Alberton, Parkson, Parkson

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

IMPLEMENTATION

- Design Bulletins issued on 2006,
 2009 and 2010 addressing the
 use of EDC in test and production
 piles
- Collect sufficient data to evaluate the system

EMBEDDED DATA COLLECTORS

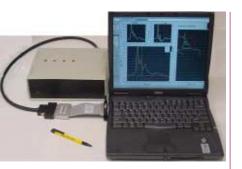
FLORIDA DEPARTMENT OF TRANSPORTATION

Standard Specifications for Road and Bridge Construction

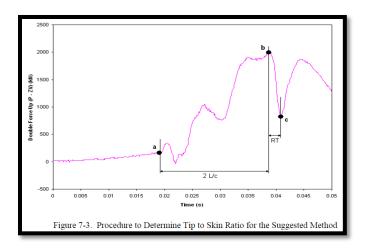
2013

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013


IMPLEMENTATION

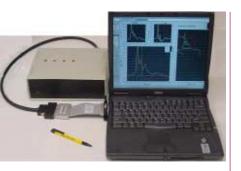
- July 2011 Workbook
 - EDC introduced as a stand-alone system
- 2013 Standard Specifications



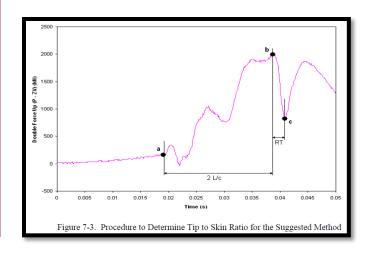
EMBEDDED DATA COLLECTORS

EDC EVALUATION

- Original Research
 - "Double wave up" for skin friction estimates



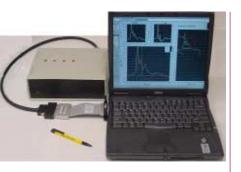
Embedded Data Collectors



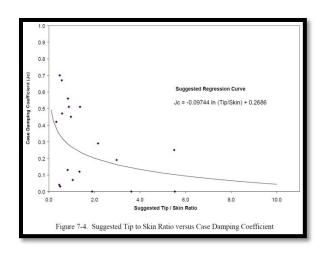
EMBEDDED DATA COLLECTORS

EDC EVALUATION

- Original Research
 - Tip to skin ratio


$$\frac{Tip}{Skin} = \frac{\left[\left(F_b - ZV_b \right) - \left(F_c - ZV_c \right) \right]}{\left[\left(F_b - ZV_b \right) - \left(F_a - ZV_a \right) \right]}$$

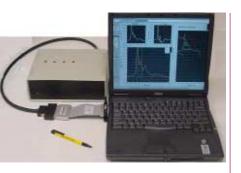
Embedded Data Collectors



EMBEDDED DATA COLLECTORS

EDC EVALUATION

- Original Research
 - Case damping vs. tip/skin ratio

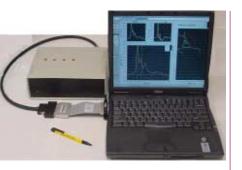

$$J_c = -0.09744 \ln \left(\frac{Tip}{Skin} \right) + 0.2686$$

Embedded Data Collectors

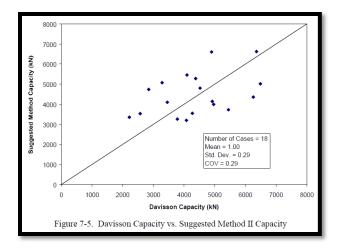
EMBEDDED DATA COLLECTORS

EDC EVALUATION

- Original Research
 - Case equation (Static resistance)


$$\overline{R} = \frac{1}{2} \left[\left(1 - \overline{J}_c \right) \left(F_1 + Z V_1 \right) + \left(1 + \overline{J}_c \right) \left(F_2 - Z V_2 \right) \right]$$

Embedded Data Collectors



EMBEDDED DATA COLLECTORS

EDC EVALUATION

- Original Research
 - Proposed method vs. static load tests

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION

- Follow-up Research
 - Evaluate EDC's measurements at the core of the pile vs. PDA and UF's instrumentation measurements on the face of the pile under controlled laboratory conditions

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION

Follow-up Research

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION

Follow-up Research

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION

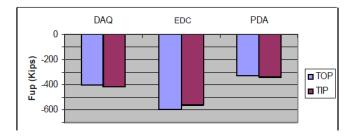


Figure 5-2. Comparison of peak F_{up} between tip and top of pile.

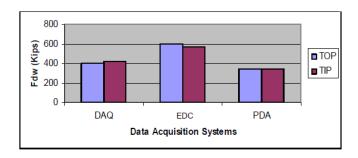


Figure 5-3. Comparison of peak F_{dw} between tip and top of pile.

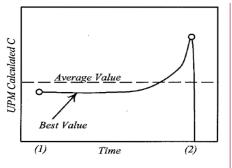
Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION

- Implementation of Findings and Smart Structures Updates
 - Revised Tip/Skin ratio

$$Tip/Skin = R_{D,tip} / R_{D,skin}$$

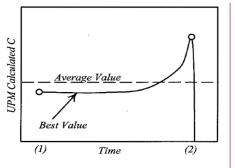

$$= [F_{down,tip} + F_{up,tip}] / [2*[F_{Down,top} - F_{Down,tip}]]$$

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION

- Implementation of Findings and Smart Structures Updates
 - Unloading point method used for tip data analysis


$$F_{applied} = F_{static} + ma + cv$$

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC EVALUATION

- Possibilities for the future
 - New methods for both tip and skin friction determination from UF (Tran & McVay)
 - Monitoring throughout the lifetime of the structure

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

EDC EVALUATION

- Summary
 - Technology developed initially through FDOT funded research
 - UF Dr. Michael McVay
 - Evaluation and stepped implementation of the system by FDOT between 2006 and 2011

EMBEDDED DATA COLLECTORS

Embedded Data Collectors

Rodrigo Herrera, PE FDOT August 27, 2013

EDC EVALUATION

- Summary
 - Comparisons of total static capacity indicate that both UF and Fixed methods generally trend conservatively when compared to PDA and CAPWAP with averages near 86% and COV under 0.26

EMBEDDED DATA COLLECTORS

AASHTO-TIG

Thank you

Rodrigo.Herrera@dot.state.fl.us

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

Potential Future Benefits

Jc Determination without Signal Matching for the use of top gauges in production piles

EMBEDDED DATA COLLECTORS

INTRODUCTION

- The EDC's UF method uses information from top and bottom gauges to determine the capacity of the pile without the need for signal matching analysis.
- This has one potential benefit: Obtaining Jc, Case damping value directly from the output without matching analysis.

EMBEDDED DATA COLLECTORS

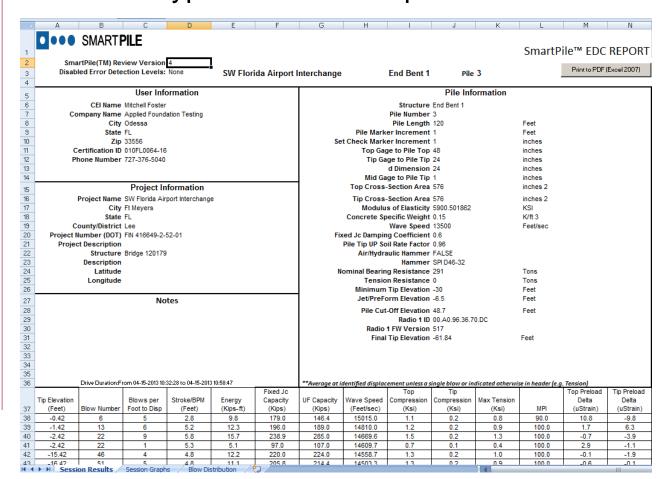
INTRODUCTION

- Once Jc from top and tip instrumentation measurements is determined, it would be reasonable to use 100% EDC with top gauges only, similar to PDA.
- When we previously required 100% EDC on all projects, PDA and CAPWAP were used to determine Jc. Piles were then accepted based on the top gauge information.

EMBEDDED DATA COLLECTORS

Determining Jc

- The procedure is similar, except the EDC data and UF method are the basis for determining Jc.
- This is easily done when the Session Reports are loaded into Excel.
- A Session Report for each Jc value will need to be created and the comparison with the UF method performed in Excel.



EMBEDDED DATA COLLECTORS

EDC output

Here is a typical Session Report in Excel:

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

EDC output

-13.33

The typical output includes "Fixed Jc Capacity" and "UF Capacity" columns:

Drive Duration:From 03-11-2013 12:07:07 to 03-11-2013 13:01:04					**Average at ide	
					Fixed Jc	
Tip Elevation		Blows per	Stroke/BPM	Energy (Kips-	Capacity	UF Capacity
(Feet)	Blow Number	Foot to Disp	(Feet)	ft)	(Kips)	(Kips)
0.67	19	6	5.8	22.9	134.0	127.4
-0.33	21	2	7.9	28.1	218.5	249.0
-1.33	24	3	7.6	24.9	174.3	216.7
-2.33	27	3	7.0	24.5	178.3	231.0
-3.33	30	3	6.6	27.8	224.7	292.3
-3.33	30	1	6.9	23.4	217.0	247.0
-5.33	34	2	7.7	27.6	250.5	273.0
-5.33	34	1	8.9	41.2	227.0	312.0
-8.33	37	2	8.0	31.7	285.5	370.5
-8.33	37	1	6.9	28.3	246.0	385.0
-9.33	38	1	7.1	26.9	197.0	271.0
-11.33	42	3	6.9	28.2	178.0	227.0
-11.33	42	1	6.7	31.2	194.0	223.0
-13.33	46	3	6.9	28.9	231.7	310.0

29.2

227.0

Embedded Data Collectors

added

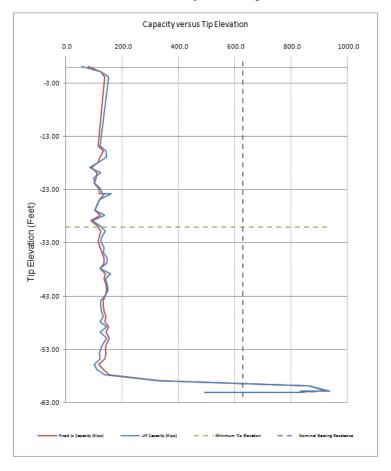
EDC

EMBEDDED DATA COLLECTORS

EDC output

A column can be added to perform statistical comparisons between Jc Cap and UF Cap:

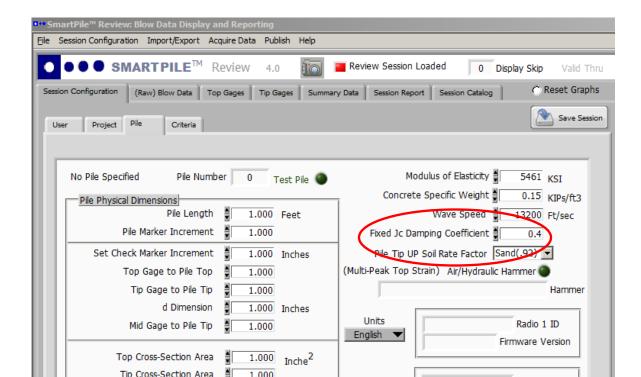
		Top	Tip			Top Preload	Tip Preload		
JF Capacity	Wave Speed		Compression	Max Tension		Delta	Delta	fixed Jc	L
(Kips)	(Feet/sec)	(Ksi)	(Ksi)	(Ksi)	MPI	(uStrain)	(uStrain)	Cap/UF	
853.0	14502.0	2.3	1.6	0.4	100.0	0.0	-0.6		0.
847.0	14509.0	2.2	1.6	0.4	100.0	0.0	-5.0		0.
844.0	14507.3	2.2	1.5	0.4	100.0	1.5	-4.4		0.
845.0	14509.0	2.3	1.5	0.4	100.0	0.0	-5.1		0.
863.0	14507.3	2.3	1.6	0.4	100.0	0.0	-7.0		0.
843.0	14509.0	2.3	1.6	0.4	100.0	-1.9	-6.2		0.
834.0	14512.9	2.2	1.5	0.4	100.0	0.0	-7.7		0.
881.0	14502.9	2.3	1.5	0.4	100.0	0.0	-3.3		0.
869.0	14496.1	2.3	1.6	0.4	100.0	0.0	-11.8		0.
855.0	14497.2	2.3	1.5	0.4	100.0	1.3	-0.6		0.
865.0	14485.3	2.2	1.5	0.4	100.0	0.0	-4.8		0.
861.0	14486.0	2.3	1.5	0.4	100.0	0.0	-7.7		0.
866.0	14490.9	2.3	1.5	0.4	100.0	0.0	-3.7		0.
861.0	14491.9	2.3	1.5	0.4	100.0	0.0	-7.7		0.
846.0	14503.8	2.3	1.5	0.4	100.0	-0.8	-3.7		0.
848.0	14499.4	2.3	1.5	0.4	100.0	0.0	-4.0		0.
860.0	14503.8	2.2	1.5	0.4	100.0	-1.0	-9.6		0.
854.0	14488.1	2.2	1.5	0.4	100.0	0.0	-3.3		0.
831.0	14487.3	2.1	1.5	0.4	100.0	0.0	-3.3		0.
717.0	14487.3	1.5	1.2	0.2	100.0	-2.7	-7.3		0.
504.0 1448	14487.3	0.8	0.7	0.0	99.0	-1.8	-0.4		0.
							Avg		0.
							stdr. Dev		0.
							correl		0.
							max		1.
							avg+stdr		1.


Embedded Data Collectors

EMBEDDED DATA COLLECTORS

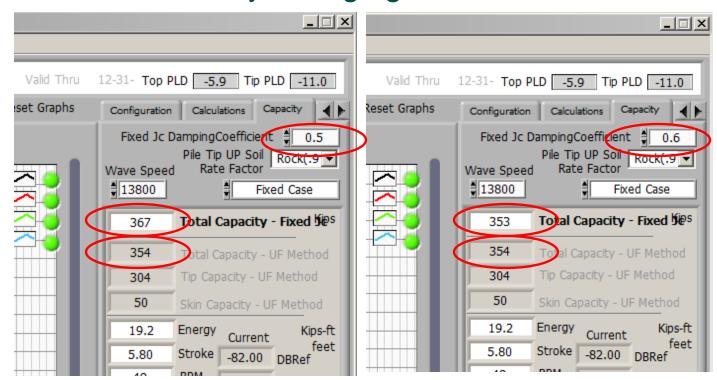
The graphical output includes a chart comparing the Fixed Case capacity with Jc and UF capacity

A typical output of an EDC session. In red, Jc capacity (at the JC value selected) compared with UF capacity (blue)


Embedded Data Collectors

EMBEDDED DATA COLLECTORS

The value of Jc used in the Fixed Method analysis is called the Fixed Jc Damping Coefficient in SmartPile Review and can be changed. The user then replays the EDC data for each different Jc value.


Embedded Data Collectors

EMBEDDED DATA COLLECTORS

Capacity variability in individual blows can also be seen by changing the Jc value

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

Suggested Procedure

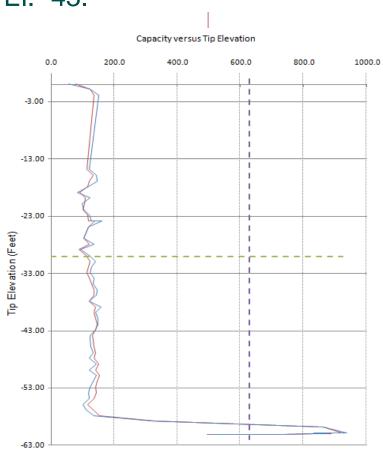
The EDC outputs may be used to estimate the Jc value as follows:

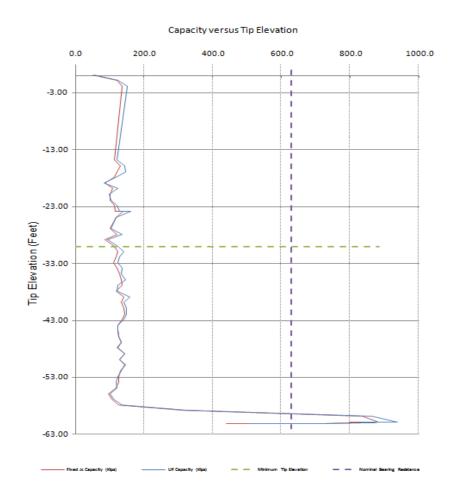
- Produce output data for several Jc values.
- Compare the values and plots of Fixed Jc Capacity and UF Capacity.
- Focus on data collected below the minimum tip elevation.

EMBEDDED DATA COLLECTORS

 Select the Jc value at which the Fixed Jc Capacity is closest to, but does not exceed the UF capacity

Note: The Fixed Jc capacity will not necessarily be parallel to the UF Capacity for the entire drive.

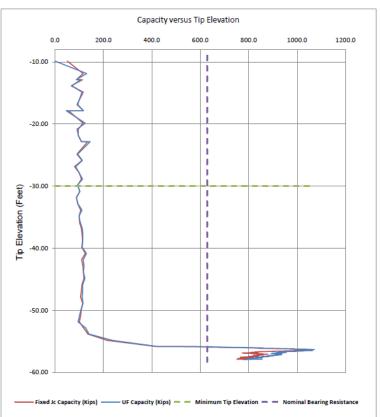

Example follows:



EMBEDDED DATA COLLECTORS

Jc=0.5 unconservative below El. -43.

Jc=0.6 is a good value. Great match and even slightly conservative below EI -57.



EMBEDDED DATA COLLECTORS

Example 2:

 In this case it can be seen how a Jc=0.6 gives a very good match with the UF Capacity, throughout the full drive.

Embedded Data Collectors

EMBEDDED DATA COLLECTORS

Notes on Set-Checks and re-drives

If the capacity is not achieved during initial drive, and we need a set-check (redrive) after a period of time, we may have a limitation because the Jc typically increases between initial drive and redrive, particularly in soils exhibiting set-up over time.