

Automated Cross-Slope and Drainage Path Method

Presentation Outline:

- Contributing factors to Hydroplaning
- Traditional and Automated Survey Methods
- Multi-Purpose Survey Vehicle (MPSV) and Subsystems
- Automated Cross-Slope Analysis Program (ACAP)
- Field Validation
- Examples
- Conclusion

Factors that contribute to hydroplaning:

- Driver
- Vehicle
- Environment
- Pavement Surface (geometry, condition, drainage)

Pavement

- Cross-slope
 Facilitates/hampers drainage
- Grade Affects drainage path (DP)
- Rutting
 Increases water retention

Traditional Survey Methods

- Slow and labor intensive
- Expose crew to hazardous conditions
- Require traffic control
- Cause inconvenience to traveling public
- Costly

Automated Survey Methods

- Fast (highway speed)
- Safe (no traffic control required)
- Efficient (simultaneous data collection)
- Cost-Effective

Automated Cross-Slope and Drainage Path Method

- Multi-Purpose Survey Vehicle (MPSV) to collect pavement data, and
- Automated Cross-Slope Analysis Program (ACAP) to analyze data

Multi-Purpose Survey Vehicle (MPSV)

- Inertial Profiling System
- Position and Orientation System (POS)

Multi-Purpose Survey Vehicle (MPSV)

Inertial Profiling System

Position and Orientation
 System (POS)

Inertial Profiling System

- Three height laser sensors
- Two accelerometers
- Distance Measurement Indicator (DMI)
- Automatic Trigger System

Multi-Purpose Survey Vehicle (MPSV)

- Inertial Profiling System
- Position and Orientation System (POS)

Position and Orientation System (POS)

- Differential Global Positioning System (DGPS)
- Inertial Measurement Unit (IMU)
- Distance Measurement Indicator (DMI)
- POS Computer

Differential Global Position System (DGPS)

- Roof antennas
- Receiver (12 channel)
- Differential correction signal

Inertial Measurement Unit (IMU)

- Generates tilt, roll and yaw data
- 3 accelerometers
- 3 gyroscopes

Distance Measuring Indicator (DMI)

Linear distance referencing

POS Computer

Data storage and processing

Input Data from MPSV

- Cross-Slope
- Grade
- Rutting
- Linear Reference (Distance)

Automated Cross-Slope Analysis Program (ACAP)

- Imports MPSV data (cross-slope, grade, rutting, distance)
- Calculates drainage path length
- Generates outputs (tabular and graphical)

Automated Cross-Slope Analysis Program (ACAP)

Drainage Path Length Calculation

$$DP^{2} = (W_{C}^{2})[1 + (S_{G}/S_{C})^{2}]^{(1)}$$

 $W_{C} =$ pavement width (ft)

$$S_G = \text{grade}(\text{ft/ft})$$

$$S_{C} = cross-slope (ft/ft)$$

Automated Cross-Slope Analysis Program (ACAP) Text Report

ad Number	4.3	
ad Name and County	2.3	
rection	0.01-mile interval re	porting
Number	3/24/2010	
ction: 2 (MP 3.95 to MP 3. per-Elevation. Cross-slope: Min= -3.2 %, f Drainage Path: Min= 12 ft, f Rutting: Min= 0.00 inch, Ma Cross-slope: Min= -3.4 %, f Drainage Path: Min= 12 ft, f Cross-slope: Min= -2.4 %, f Drainage Path: Min= 12 ft, f	358:	
Rutting: Min= 0.00 inch, Ma Cross-slope: Min= 0.6 %, M Drainage Path: Min= 12.2 ft Rutting: Min= 0.07 inch, Ma		
	ch	with L2 up to 0.35

Automated Cross-Slope Analysis Program (ACAP) Tabular Output

Milepost (MP)	Cross-slope (%)	Longitudinal Grade (%)	Drainage Path (ft)
6.32	2.36	-2.37	17
6.33	2.62	-1.61	14
6.34	3.11	-0.87	12
6.35	3.29	-0.56	12
6.36	3.44	-0.51	12
6.37	2.74	-0.40	12
6.38	4.24	-1.22	12
6.39	3.34	-0.59	12
6.4	3.53	-1.03	13
6.41	2.93	-0.61	12
6.42	1.81	-0.45	12
6.43	2.80	-0.68	12
6.44	2.66	-0.89	13
6.45	2.97	-0.82	12
6.46	2.78	-0.94	13
6.47	3.10	-0.96	13
6.48	2.62	-0.79	13
6.49	3.50	-0.91	12

Automated Cross-Slope Analysis Program (ACAP) 2D Graphical Output

Automated Cross-Slope Analysis Program (ACAP) 3D Graphical Output (work in progress)

Field Validation

MPSV Cross-Slope Precision

- Repeatability: 0.06%
- Accuracy: ± 0.13 %

Case Example 1

Problem:

Shallow cross-slope within super elevation of interstate

Consequence: Vehicle departures reported

Case Example 2

Problem:

Poor pavement drainage reported on 6-lane rural interstate

Consequence:

Roadway departures reported

Before Corrective Action

Short-Term Preventive Action

Short-Term Preventive Action

Short-Term Solution

Long-term Solution

• Milling

Observations

- Substantial cross-slope improvement
- Smoother transition in and out of super-elevation
- Elimination of surface drainage problem
- No new roadway departures reported

Automated Cross-Slope and Drainage Path Method

- Identifies areas of pavement prone to hydroplaning
- For design, construction and safety projects
- Assists in developing short and long term solutions
- Safe, fast and very effective

Thank You !