HIGH TENSION CABLE BARRIERS

Do Cable Barriers Work?

Do Cable Barriers Work?

DISCLAIMER

PREFERENCES

OUTLINE

- Why Median Barrier?
- Old vs. New
- High Tension Cable Barrier System
- Design Considerations
- Construction Sequence
- Maintenance
- Installation Cost
- Cable Barrier In Florida
- Things To Think About

Why Median Barrier ?

- Many Cross Median Crashes occur on medians greater than 30 feet wide
- 64 Ft. Median 30° Angle 70 mph
- Across Median Crashes 3x's more severe than other freeway crashes (NC98)
- WI Study- 53% of Cross Median Crashes resulted in personal injury & 7% involved a fatality

Why Median Barrier ?

- Median encroachments increase with higher traffic volumes
- Brevard Co. 1994-2001 123 fatal crashes. Almost 1/3 involved in median crossovers
- Crossover deaths may be under reported because of the way reporting officers record the incidents on crash reports

Why Median Barrier ?

Florida's Turnpike Median Crash Data

SR 91	2001	2002	2003	2004	2005
Fatal Crossover Crashes	12	17	26	25	4
Fatalities	18	21	34	46	4

Median Barrier Options Available

Median Barrier Options Available

Median Barrier Options Available

"We Don't Do Cable"

Form 281-10		and 16.05
DATU	5 May 31, 1984.	MEMORANDUM State of Horida Department of Transportation
ro La prosi	Tom Lewis, Jr., Assistant Secreta	
COPTES TO	b. c. bullara, state besign Engli	HANNA LA
SUBARCE	CABLE GUARDRAIL	W/M/85

Your memorandum of April 23, 1985 stated that you had seen cable guardrail in use in Virginia and North Carolina, and requested information as to the Department's use of cable guardrail.

In 1983-84, Roadway Design made an indepth study of cable guardrall. The study was prompted by the need for a barrier that would be suited to that portion of SR 29 subject to frequent panther crossings.

The cable guardrail study covered standards and specifications of eight states, including the State of Virginia. Contacts were made with state highway departments, transportation research institutions, the FHWA Research Division and others.

On May 8, 1985, we received the most recent update of North Carolina design policies, procedures and standard drawings. Since there were no standard drawings or updates for cable guardrail, we checked by phone with the State Chief of Roadway Design, and he stated that cable guardrail is not used in North Carolina and has never been in the Standard Drawings; but, that some cable might yet be in place on the Parkway or other locations, having been installed under special request many years ago.

From our 1983-84 study, we learned that New York State has probably done more research, testing, experimentation and development than any other state or institution, but that the State's maintenance of cable systems is very deficient. Although there is similarity between the cable systems of the eight states studied, there is no conformance in design, installation and recommendations for maintenance.

We have concluded that cable guardrail is not viable as a standard use barrier for Florida highways, based in part on the following information:

(a) The cable guardrail must be designed as a weak post system requiring large deflection in the cable upon vehicle impact.

Memo

US Cable

US Cable After Hit

High Tension Cable After A Hit

Basic Segments Of Cable Barrier System

- End Anchors
- Transition Sections
- Basic Length of Need Section

End Anchors

- Deadman Type
- Crashworthy
- Guardrail

Deadman Type

Crashworthy

Guardrail

Transition Section

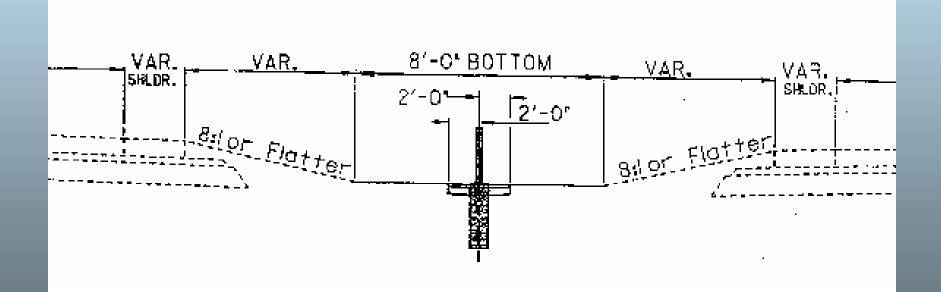
Basic Length of Need Section

- Brifen
- CASS by Trinity
- Gibraltar
- Nucor Marion
- Safence

Gibraltar

Nucor Marion

Tension Adjustment

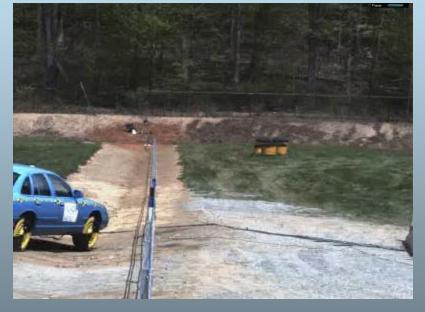


- Location
- Deflection Space
- Type Anchors
- Post Footings

Location- Center Line Of Median

Location- Shoulder

Location – Slope



Design Consideration • Location - Slope

• Location - Slope

1 ft. Offset

4 ft. Offset

Design Considerations

Deflection – Controlled by Post Spacing

Deflection	Post Spacing
9'3"	30.FT
9'	28.FT
8'	20.FT
7'	12.FT

Design Consideration

Deflection – Also affected by angle & speed

Design Considerations

Type Anchors

- Deadman
- Crashworthy
- Guardrail Connection

Design Considerations

Post Footings

Driven

Concrete With Sockets

Prepare Ground

Misc. Asphalt Placed

Construction Sequence Holes Drilled & Sockets Installed

Posts Installed and Cable Strung

Cable Tensioned

Maintenance

- Remove Damaged Posts
- Insert New Posts In Sockets
- Re-attach Cable

Maintenance Video

Maintenance

Estimated Repair Time For A "Typical Hit"

Most States reporting 30-60 Minutes

Installation Costs Numbers Vary \$9 --- \$19 LF

Anchors Included or separate? Cable System Only?

Mowing Strip / Earthwork?

Maintenance Of Traffic?

Installation Costs Beachline Comparison

6.3 mi. Double Face Guardrail \$338,000 per mi.

11.1 mi. Cable Barrier

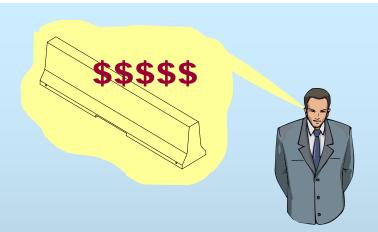
\$209,000 per mi.

Savings: \$129,000 per mi.

Cable Barrier In Florida

- HEFT
- District 7
- Turnpike Canals
- District 1 Developmental Specification

We Know:


Median barriers can significantly reduce Cross Median Crashes

Barrier selection & placement are critical for optimal performance

Cable barriers offer cost savings while meeting current test level requirements

High Tension Cable barriers can sustain hits and still remain effective

Number of incidents will increase, but severity will be significantly reduced

We don't know:

What median width / ADT combinations result in cost-effective warrants

How median barriers (cable, w-beam, concrete) perform when struck by a vehicle coming UP a slope into the barrier

Life cycle cost

Performance in hits on convex side of horizontal curves

Performance in sag vertical curves

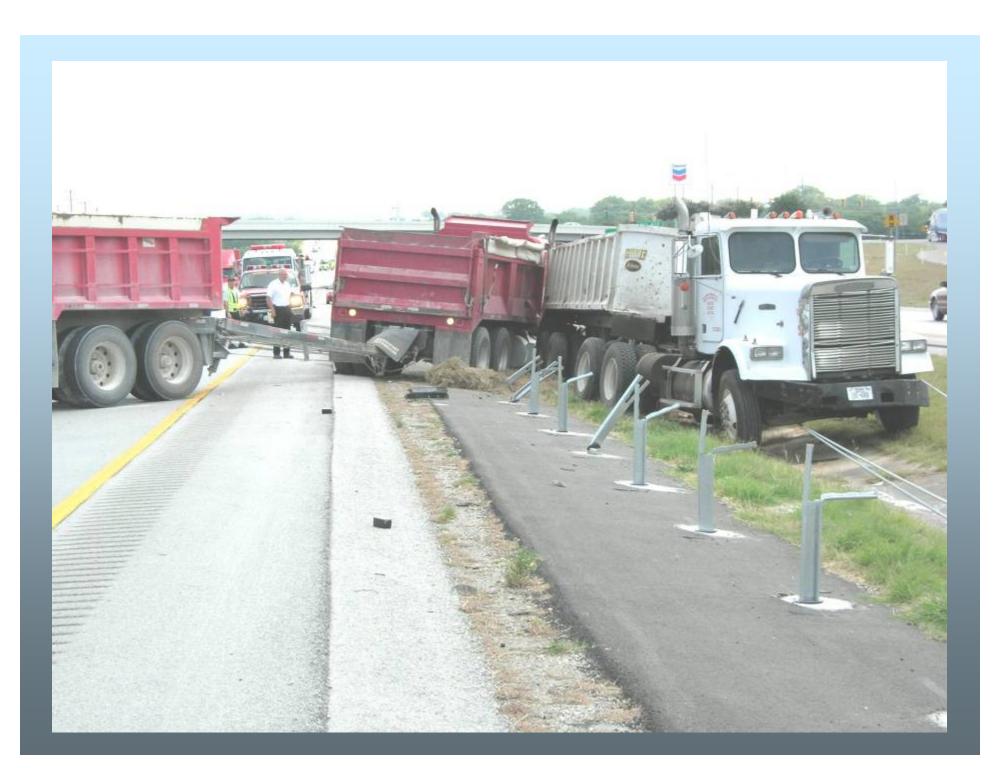
Life of the cables / long term performance of cables

Additional Issues:

- Ambient air vs. rope temperature
- Cable tension tolerances
- Best lateral placement
- Pre-stretched vs. non pre-stretched
- •Field applied vs. factory applied fittings
- •Others ??

The future:

Standardization?


Standardization of testing?

Standard specification?

Snow At Concrete Barrier

