FAST FACTS:

Rigified FRP

PROJECT LOCATION: Bradley, ME

PROJECT NAME: Jenkins Bridge

BRIDGE MATERIAL DESIGN OPTION: Rigified FRP

UNIQUE FEATURE: Approximately 30 strain gages were installed on three arches. The bridge also employed a composite headwall design with steel columns and waler.

PROJECT DESCRIPTION: The Jenkins Bridge spans the Great Works Stream in Bradley and is located on Cram Street, a local road. Project design included an innovative composite headwall design that allowed the voided composite headwall to be installed rapidly and provided a corrosion-resistant means of soil retention.
Purpose and Need:
Existing twin steel structural pipe arches for this bridge were constructed in 1970 by the town of Bradley. Extensive deterioration and damage to the pipes led to a recommendation to replace the structure.

Contract Amount:
N/A

Engineer’s Estimate:
$1,150,000

Bid Amount:
$814,919

Final Contract Value:
$941,500 including direct purchase of FRP arches by MaineDOT

Traditional Approach:
Replace the existing structure with two concrete box culverts.

New Approach:
Use Rigified FRP arches on concrete footings on steel H-piles. Employ a composite headwall system with T-walls on all four corners.

Bridge Details:
- Span: 38'-6"
- Rise: 6'
- Width: 34'
- Skew: 19 degrees
- Arch: 12 carbon filter tubes, 12" in diam., spaced @ 2'-11"
- Headwall: composite panels with through ties

Benefits Realized/Expected:
The first year in service an ice floe completely dammed up this bridge opening. However, the bridge withstood the extreme hydraulic forces with no negative results. Though this had been a concern with FRP technology, the bridge withstood the forces with no observed damage and handled the ice and water flow in a manner similar to conventional bridge structures.

Duration of Activity:
2010

Owner:
MaineDOT

Team/Affiliations:
MaineDOT; University of Maine AEWC Advanced Structures and Composites Center; Advanced Infrastructure Technologies; Kleinfelder ● SEA; Wyman & Simpson, Inc.

Contacts:
- Dale Peabody
 Research Engineer
 MaineDOT
 207-624-3305
dale.peabody@maine.gov

- Nate Benoit
 Project Manager
 Urban & Federal Bridge Program
 MaineDOT
 207-215-1590
nathaniel.benoit@maine.gov

- Brit Svoboda
 President/CEO, Advanced Infrastructure Technologies
 20 Godfrey Drive
 Orono, ME 04473
 207-866-6526
 www.aitbridges.com

- Jonathan Kenerson
 Structural Bridge Engineer
 Advanced Infrastructure Technologies
 207-866-6526
 jon@aitbridges.com